m-cluster categories and m-replicated algebras
暂无分享,去创建一个
[1] H. Thomas. Defining an m-cluster category , 2006, math/0607173.
[2] K. Baur,et al. A geometric description of m-cluster categories , 2006, math/0607151.
[3] Bin Zhu. Generalized cluster complexes via quiver representations , 2006, math/0607155.
[4] I. Reiten,et al. Cluster-tilted algebras are Gorenstein and stably Calabi–Yau , 2005, math/0512471.
[5] R. Schiffler,et al. Cluster categories and duplicated algebras , 2005, math/0509501.
[6] Sergey Fomin,et al. Generalized cluster complexes and Coxeter combinatorics , 2005, math/0505085.
[7] B. Keller. On triangulated orbit categories , 2005, Documenta Mathematica.
[8] I. Reiten,et al. Tilting theory and cluster combinatorics , 2004, math/0402054.
[9] R. Schiffler,et al. Quivers with relations arising from clusters $(A_n$ case) , 2004, math/0401316.
[10] S. Fomin,et al. Cluster algebras II: Finite type classification , 2002, math/0208229.
[11] S. Fomin,et al. Cluster algebras I: Foundations , 2001, math/0104151.
[12] P. Webb. REPRESENTATION THEORY OF ARTIN ALGEBRAS (Cambridge Studies in Advanced Mathematics 36) By Maurice Auslander, Idun Reiten and Sverre O. Smalø: 423 pp., £50.00, ISBN 0 521 41134 3 (Cambridge University Press, 1995). , 1997 .
[13] I. Reiten,et al. Tilting in Abelian Categories and Quasitilted Algebras , 1996 .
[14] F. U. Coelho,et al. Complements to Partial Tilting Modules , 1994 .
[15] I. Reiten,et al. Applications of contravariantly finite subcategories , 1991 .
[16] A. Schofield. TRIANGULATED CATEGORIES IN THE REPRESENTATION THEORY OF FINITE DIMENSIONAL ALGEBRAS (London Mathematical Society Lecture Note Series 119) , 1990 .
[17] A. Schofield,et al. Cocovers and tilting modules , 1989, Mathematical Proceedings of the Cambridge Philosophical Society.
[18] Dieter Happel,et al. Triangulated categories in the representation theory of finite dimensional algebras , 1988 .
[19] Dieter Happel,et al. On the derived category of a finite-dimensional algebra , 1987 .
[20] I. Assem,et al. On a class representation-finite QF-3 algebras , 1987 .
[21] I. Assem. On representations of the bimodule DA , 1985 .
[22] C. Ringel. Tame Algebras and Integral Quadratic Forms , 1985 .
[23] J. Waschbüsch,et al. Trivial Extensions of Tilted Algebras , 1983 .
[24] K. Nishida. On tilted algebras , 1983 .
[25] Peter Gabriel,et al. Covering spaces in representation-theory , 1982 .
[26] M. Hoshino. Trivial extensions of tilted algebras , 1982 .
[27] K. Yamagata. Extensions over hereditary Artinian rings with self-dualities, I , 1981 .
[28] H. Tachikawa. Representations of trivial extensions of hereditary algebras , 1980 .