Quantifying Data Augmentation for LiDAR based 3D Object Detection

In this work, we shed light on different data augmentation techniques commonly used in Light Detection and Ranging (LiDAR) based 3D Object Detection. We, therefore, utilize a state of the art voxel-based 3D Object Detection pipeline called PointPillars and carry out our experiments on the well established KITTI dataset. We investigate a variety of global and local augmentation techniques, where global augmentation techniques are applied to the entire point cloud of a scene and local augmentation techniques are only applied to points belonging to individual objects in the scene. Our findings show that both types of data augmentation can lead to performance increases, but it also turns out, that some augmentation techniques, such as individual object translation, for example, can be counterproductive and can hurt overall performance. We show that when we apply our findings to the data augmentation policy of PointPillars we can easily increase its performance by up to 2%. In order to provide reproducibility, our code will be publicly available at this http URL.

[1]  Yin Zhou,et al.  VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[2]  Jianxiong Xiao,et al.  SUN RGB-D: A RGB-D scene understanding benchmark suite , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[3]  Cyrill Stachniss,et al.  SemanticKITTI: A Dataset for Semantic Scene Understanding of LiDAR Sequences , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[4]  Bo Li,et al.  SECOND: Sparsely Embedded Convolutional Detection , 2018, Sensors.

[5]  Jiaya Jia,et al.  Fast Point R-CNN , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[6]  Song Han,et al.  Point-Voxel CNN for Efficient 3D Deep Learning , 2019, NeurIPS.

[7]  Huimin Ma,et al.  3D Object Proposals for Accurate Object Class Detection , 2015, NIPS.

[8]  Leonidas J. Guibas,et al.  Deep Hough Voting for 3D Object Detection in Point Clouds , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[9]  Xiaogang Wang,et al.  PointRCNN: 3D Object Proposal Generation and Detection From Point Cloud , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[10]  Dragomir Anguelov,et al.  Scalability in Perception for Autonomous Driving: Waymo Open Dataset , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[11]  Andrea Simonelli,et al.  Disentangling Monocular 3D Object Detection , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[12]  Simon Lucey,et al.  Argoverse: 3D Tracking and Forecasting With Rich Maps , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[13]  Yan Wang,et al.  Pseudo-LiDAR From Visual Depth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Driving , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[14]  Jiong Yang,et al.  PointPillars: Fast Encoders for Object Detection From Point Clouds , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[15]  Ruigang Yang,et al.  The ApolloScape Dataset for Autonomous Driving , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[16]  Yi-Ting Chen,et al.  The H3D Dataset for Full-Surround 3D Multi-Object Detection and Tracking in Crowded Urban Scenes , 2019, 2019 International Conference on Robotics and Automation (ICRA).

[17]  Ji Wan,et al.  Multi-view 3D Object Detection Network for Autonomous Driving , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[18]  Matthias Nießner,et al.  ScanNet: Richly-Annotated 3D Reconstructions of Indoor Scenes , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[19]  Leonidas J. Guibas,et al.  PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[20]  Andreas Geiger,et al.  Are we ready for autonomous driving? The KITTI vision benchmark suite , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[21]  Qiang Xu,et al.  nuScenes: A Multimodal Dataset for Autonomous Driving , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[22]  Renaud Dubé,et al.  AMZ Driverless: The full autonomous racing system , 2019, J. Field Robotics.

[23]  Bin Yang,et al.  PIXOR: Real-time 3D Object Detection from Point Clouds , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[24]  Luc Van Gool,et al.  The Pascal Visual Object Classes (VOC) Challenge , 2010, International Journal of Computer Vision.

[25]  Steven Lake Waslander,et al.  Joint 3D Proposal Generation and Object Detection from View Aggregation , 2017, 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).