Bayesian Analysis in Natural Language Processing

[1]  Gholamreza Haffari,et al.  Structured Prediction of Sequences and Trees Using Infinite Contexts , 2015, ECML/PKDD.

[2]  Shay B. Cohen,et al.  Online Adaptor Grammars with Hybrid Inference , 2014, TACL.

[3]  Mark Johnson,et al.  Exploring the Role of Stress in Bayesian Word Segmentation using Adaptor Grammars , 2014, TACL.

[4]  Matt Post,et al.  Bayesian Tree Substitution Grammars as a Usage-based Approach , 2013, Language and speech.

[5]  Yonatan Bisk,et al.  An HDP Model for Inducing Combinatory Categorial Grammars , 2013, TACL.

[6]  J. Tenenbaum,et al.  A tutorial introduction to Bayesian models of cognitive development , 2011, Cognition.

[7]  Mark Steedman,et al.  Combinatory Categorial Grammar , 2011 .

[8]  S. Fienberg Bayesian Models and Methods in Public Policy and Government Settings , 2011, 1108.2177.

[9]  J. B. Tenenbaum,et al.  How to Grow a Mind: Statistics, Structure, and Abstraction , 2011, Science.

[10]  J. Tenenbaum,et al.  Probabilistic models of cognition: exploring representations and inductive biases , 2010, Trends in Cognitive Sciences.

[11]  A. Gelman,et al.  Philosophy and the practice of Bayesian statistics. , 2010, The British journal of mathematical and statistical psychology.

[12]  R. Barzilay,et al.  Content Modeling Using Latent Permutations , 2009, J. Artif. Intell. Res..

[13]  Matt Post,et al.  Bayesian Learning of a Tree Substitution Grammar , 2009, ACL.

[14]  Regina Barzilay,et al.  Unsupervised Multilingual Grammar Induction , 2009, ACL.

[15]  Chris Dyer,et al.  A Gibbs Sampler for Phrasal Synchronous Grammar Induction , 2009, ACL.

[16]  Ben O'Neill,et al.  Exchangeability, Correlation, and Bayes' Effect , 2009 .

[17]  T. Griffiths,et al.  A Bayesian framework for word segmentation: Exploring the effects of context , 2009, Cognition.

[18]  Yee Whye Teh,et al.  A stochastic memoizer for sequence data , 2009, ICML '09.

[19]  Regina Barzilay,et al.  Adding More Languages Improves Unsupervised Multilingual Part-of-Speech Tagging: a Bayesian Non-Parametric Approach , 2009, NAACL.

[20]  Dan Klein,et al.  Online EM for Unsupervised Models , 2009, NAACL.

[21]  Noah A. Smith,et al.  Shared Logistic Normal Distributions for Soft Parameter Tying in Unsupervised Grammar Induction , 2009, NAACL.

[22]  Christopher D. Manning,et al.  Hierarchical Bayesian Domain Adaptation , 2009, NAACL.

[23]  Hal Daumé,et al.  Non-Parametric Bayesian Areal Linguistics , 2009, HLT-NAACL.

[24]  Jianfeng Gao,et al.  A comparison of Bayesian estimators for unsupervised Hidden Markov Model POS taggers , 2008, EMNLP.

[25]  Shankar Kumar,et al.  Lattice Minimum Bayes-Risk Decoding for Statistical Machine Translation , 2008, EMNLP.

[26]  Regina Barzilay,et al.  Unsupervised Multilingual Learning for POS Tagging , 2008, EMNLP.

[27]  Regina Barzilay,et al.  Bayesian Unsupervised Topic Segmentation , 2008, EMNLP.

[28]  John DeNero,et al.  Sampling Alignment Structure under a Bayesian Translation Model , 2008, EMNLP.

[29]  Yee Whye Teh,et al.  Beam sampling for the infinite hidden Markov model , 2008, ICML '08.

[30]  Regina Barzilay,et al.  Unsupervised Multilingual Learning for Morphological Segmentation , 2008, ACL.

[31]  Charles Kemp,et al.  Bayesian models of cognition , 2008 .

[32]  Michael I. Jordan,et al.  The nested chinese restaurant process and bayesian nonparametric inference of topic hierarchies , 2007, JACM.

[33]  Dan Klein,et al.  Unsupervised Coreference Resolution in a Nonparametric Bayesian Model , 2007, ACL.

[34]  T. Griffiths,et al.  Probabilistic Topic Models , 2007 .

[35]  Thomas L. Griffiths,et al.  Adaptor Grammars: A Framework for Specifying Compositional Nonparametric Bayesian Models , 2006, NIPS.

[36]  Michael I. Jordan,et al.  Hierarchical Dirichlet Processes , 2006 .

[37]  Markus Dreyer,et al.  Better Informed Training of Latent Syntactic Features , 2006, EMNLP.

[38]  Yee Whye Teh,et al.  A Hierarchical Bayesian Language Model Based On Pitman-Yor Processes , 2006, ACL.

[39]  Thomas L. Griffiths,et al.  Contextual Dependencies in Unsupervised Word Segmentation , 2006, ACL.

[40]  Dan Klein,et al.  Learning Accurate, Compact, and Interpretable Tree Annotation , 2006, ACL.

[41]  Hanna M. Wallach Topic modeling: beyond bag-of-words , 2006, ICML.

[42]  Thomas L. Griffiths,et al.  Infinite latent feature models and the Indian buffet process , 2005, NIPS.

[43]  Noah A. Smith,et al.  Parsing with Soft and Hard Constraints on Dependency Length , 2005, IWPT.

[44]  Detlef Prescher,et al.  Head-Driven PCFGs with Latent-Head Statistics , 2005, IWPT.

[45]  Noah A. Smith,et al.  Compiling Comp Ling: Weighted Dynamic Programming and the Dyna Language , 2005, HLT.

[46]  Jun'ichi Tsujii,et al.  Probabilistic CFG with Latent Annotations , 2005, ACL.

[47]  Mikio Yamamoto,et al.  Dirichlet mixtures in text modeling , 2005 .

[48]  Dan Klein,et al.  Corpus-Based Induction of Syntactic Structure: Models of Dependency and Constituency , 2004, ACL.

[49]  Michael I. Jordan,et al.  Variational methods for the Dirichlet process , 2004, ICML.

[50]  Thomas Hofmann,et al.  Gaussian process classification for segmenting and annotating sequences , 2004, ICML.

[51]  Shankar Kumar,et al.  Minimum Bayes-Risk Decoding for Statistical Machine Translation , 2004, NAACL.

[52]  Matthias W. Seeger,et al.  Gaussian Processes For Machine Learning , 2004, Int. J. Neural Syst..

[53]  Hermann Ney,et al.  A Systematic Comparison of Various Statistical Alignment Models , 2003, CL.

[54]  Jason Eisner,et al.  Transformational Priors Over Grammars , 2002, EMNLP.

[55]  P. Kantor Foundations of Statistical Natural Language Processing , 2001, Information Retrieval.

[56]  R. Rosenfeld,et al.  Two decades of statistical language modeling: where do we go from here? , 2000, Proceedings of the IEEE.

[57]  Shin Ishii,et al.  On-line EM Algorithm for the Normalized Gaussian Network , 2000, Neural Computation.

[58]  Fernando Pereira,et al.  Relating Probabilistic Grammars and Automata , 1999, ACL.

[59]  Geoffrey E. Hinton,et al.  A View of the Em Algorithm that Justifies Incremental, Sparse, and other Variants , 1998, Learning in Graphical Models.

[60]  Aravind K. Joshi,et al.  Tree-Adjoining Grammars , 1997, Handbook of Formal Languages.

[61]  F ChenStanley,et al.  An Empirical Study of Smoothing Techniques for Language Modeling , 1996, ACL.

[62]  Joshua Goodman,et al.  Parsing Algorithms and Metrics , 1996, ACL.

[63]  M. Escobar,et al.  Bayesian Density Estimation and Inference Using Mixtures , 1995 .

[64]  Hermann Ney,et al.  Improved backing-off for M-gram language modeling , 1995, 1995 International Conference on Acoustics, Speech, and Signal Processing.

[65]  Andreas Stolcke,et al.  Inducing Probabilistic Grammars by Bayesian Model Merging , 1994, ICGI.

[66]  Ralph Grishman,et al.  A Procedure for Quantitatively Comparing the Syntactic Coverage of English Grammars , 1991, HLT.

[67]  R. T. Cox Probability, frequency and reasonable expectation , 1990 .

[68]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[69]  David J. Weir,et al.  Characterizing Structural Descriptions Produced by Various Grammatical Formalisms , 1987, ACL.

[70]  Slava M. Katz,et al.  Estimation of probabilities from sparse data for the language model component of a speech recognizer , 1987, IEEE Trans. Acoust. Speech Signal Process..

[71]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[72]  John Darlington,et al.  A Transformation System for Developing Recursive Programs , 1977, J. ACM.

[73]  Jay Earley,et al.  An efficient context-free parsing algorithm , 1970, Commun. ACM.

[74]  Daniel H. Younger,et al.  Recognition and Parsing of Context-Free Languages in Time n^3 , 1967, Inf. Control..

[75]  Tadao Kasami,et al.  An Efficient Recognition and Syntax-Analysis Algorithm for Context-Free Languages , 1965 .

[76]  Laura Kallmeyer,et al.  Data-driven Parsing using PLCFRS Data-driven Parsing using Probabilistic Linear Context-Free Rewriting Systems , 2011 .

[77]  B. D. Finetti,et al.  Foresight: Its Logical Laws, Its Subjective Sources , 1992 .