Quantitative analysis of decay transients applied to a multimode pulsed cavity ringdown experiment.

The intensity and noise properties of decay transients obtained in a generic pulsed cavity ringdown experiment are analyzed experimentally and theoretically. A weighted nonlinear least-squares analysis of digitized decay transients is shown that avoids baseline offset effects that induce systematic deviations in the estimation of decay rates. As follows from simulations not only is it a method that provides correct estimates for the values of the fit parameters, but moreover it also yields a correct estimate of the precision of the fit parameters. It is shown experimentally that a properly aligned stable optical resonator can effectively yield monoexponential decays under multimode excitation. An on-line method has been developed, based on a statistical analysis of the noise properties of the decay transients, to align a stable resonator toward this monoexponential decay.

[1]  D. Spencer,et al.  Sensitive measurement of photon lifetime and true reflectances in an optical cavity by a phase-shift method. , 1980, Applied optics.

[2]  J. Hodges,et al.  Laser bandwidth effects in quantitative cavity ring-down spectroscopy. , 1996, Applied optics.

[3]  J. B. Paul,et al.  INFRARED CAVITY RINGDOWN LASER ABSORPTION SPECTROSCOPY (IR-CRLAS) OF JET-COOLED WATER CLUSTERS , 1995 .

[4]  Iwan Holleman,et al.  Trace gas detection via cavity ring down spectroscopy , 1995, Other Conferences.

[5]  Jun Ye,et al.  Ultrasensitive detections in atomic and molecular physics: demonstration in molecular overtone spectroscopy , 1998 .

[6]  G. Meijer,et al.  Cavity Ringdown Spectroscopy , 1998, Technical Digest. 1998 EQEC. European Quantum Electronics Conference (Cat. No.98TH8326).

[7]  James J. Scherer,et al.  cw Integrated cavity output spectroscopy , 1999 .

[8]  G. Meijer,et al.  Measurement of the beam intensity in a laser-desorption jet-cooling mass-spectrometer , 1995 .

[9]  Y. Beers Introduction to the theory of error , 1953 .

[10]  Kevin K. Lehmann,et al.  The superposition principle and cavity ring-down spectroscopy , 1996 .

[11]  Kevin K. Lehmann,et al.  Ring-down cavity absorption spectroscopy of the very weak HCN overtone bands with six, seven, and eight stretching quanta , 1993 .

[12]  J. B. Paul,et al.  Cavity Ringdown Laser Absorption Spectroscopy: History, Development, and Application to Pulsed Molecular Beams. , 1997, Chemical reviews.

[13]  Richard N. Zare,et al.  Cavity ring-down spectroscopy for quantitative absorption measurements , 1995 .

[14]  A. O’Keefe,et al.  Cavity ring‐down optical spectrometer for absorption measurements using pulsed laser sources , 1988 .

[15]  A. Kastler,et al.  Atomes à I’Intérieur d’un Interféromètre Perot-Fabry , 1962 .

[16]  R. Zare,et al.  Cavity ring-down spectroscopy with Fourier-transform-limited light pulses , 1996 .

[17]  David H. Parker,et al.  Coherent cavity ring down spectroscopy , 1994 .

[18]  Jae Yong Lee,et al.  Complex traversal time for optical pulse transmission in a Fabry–Perot cavity , 2000 .

[19]  Michael N. R. Ashfold,et al.  Cavity ring-down spectroscopy , 1998 .

[20]  J. Hodges,et al.  Response of a ring-down cavity to an arbitrary excitation , 1996 .

[21]  Weighted fit of optical spectra , 1995 .

[22]  Anthony O'Keefe,et al.  Integrated cavity output analysis of ultra-weak absorption , 1998 .

[23]  G. T. Fraser,et al.  Doppler-free nonlinear absorption in ethylene by use of continuous-wave cavity ringdown spectroscopy. , 2000, Applied Optics.

[24]  Theodor W. Hänsch,et al.  Ultrasensitive response of a CW dye laser to selective extinction , 1972 .

[25]  Rudy Peeters,et al.  Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy , 1998 .

[26]  J. Remo Diffraction losses for symmetrically perturbed curved reflectors in open resonators. , 1981, Applied optics.

[27]  Charles C. Harb,et al.  A laser-locked cavity ring-down spectrometer employing an analog detection scheme , 2000 .

[28]  S. Milošević,et al.  Nonlinear effects in pulsed cavity ringdown spectroscopy of lithium vapour , 2000 .

[29]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[30]  W. Ubachs,et al.  b(1)Sigma(g)(+)-X-3 Sigma(g)(-) (0,0) band of oxygen isotopomers in relation to tests of the symmetrization postulate in O-16(2) , 1997 .

[31]  J P Looney,et al.  Pulsed, single-mode cavity ringdown spectroscopy. , 1999, Applied optics.