Group analysis of ordinary differential equations and the invariance principle in mathematical physics (for the 150th anniversary of Sophus Lie)
暂无分享,去创建一个
[1] N. G. Parke,et al. Ordinary Differential Equations. , 1958 .
[2] B. Riemann. über die Fortpflanzung ebener Luftwellen von endlicher Schwingungsweite , 1860 .
[3] L. Michel,et al. Classification of the symmetries of ordinary differential equations , 1991 .
[4] J. Gillis,et al. Nonlinear Partial Differential Equations in Engineering , 1967 .
[5] G. Bluman,et al. Symmetries and differential equations , 1989 .
[6] L. Sedov. Similarity and Dimensional Methods in Mechanics , 1960 .
[7] V. Pukhnachev. Invariant Solutions of the Navier-Stokes Equations Describing Motions with a Free Boundary. , 1972 .
[8] H. Stephani. Differential Equations: Their Solution Using Symmetries , 1990 .
[9] NONLINEAR SUPERPOSITION FOR OPERATOR EQUATIONS , 1978 .
[10] R. L. Anderson. A nonlinear superposition principle admitted by coupled Riccati equations of the projective type , 1980 .
[11] Fazal M. Mahomed,et al. Lie algebras associated with scalar second-order ordinary differential equations , 1989 .
[12] Mayrhofer. Continuous groups of transformations , 1936 .
[13] Nail H. Ibragimov,et al. Lie-Backlund Transformations in Applications , 1987 .
[14] A. Jamiołkowski. Book reviewApplications of Lie groups to differential equations : Peter J. Olver (School of Mathematics, University of Minnesota, Minneapolis, U.S.A): Graduate Texts in Mathematics, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1986, XXVI+497pp. , 1989 .
[15] S. Lie. Theorie der Transformationsgruppen I , 1880 .
[16] L. Eisenhart,et al. Continuous groups of transformations , 1933 .
[17] The hierarchy of Huygens equations in spaces with a non-trivial conformal group , 1991 .
[18] E. Vessiot. Sur une classe d'équations différentielles , 1893 .
[19] W. Miller,et al. Group analysis of differential equations , 1982 .
[20] E. Copson. On the Riemann-Green function , 1957 .
[21] Choquet Bruhat,et al. Analysis, Manifolds and Physics , 1977 .
[22] S. Lie. Classification und Integration von gewöhnlichen Differentialgleichungen zwischenxy, die eine Gruppe von Transformationen gestatten , 1888 .
[23] G. Temple,et al. GENERALIZED FUNCTIONS, VOL. I , 1965 .
[24] N. Ibragimov. Transformation groups applied to mathematical physics , 1984 .
[25] Georg Scheffers,et al. Geometrie der Berührungstransformationen , 1976 .
[26] J. Leray. Hyperbolic differential equations , 1953 .
[27] Edmund Pinney,et al. The nonlinear differential equation ”+()+⁻³=0 , 1950 .
[28] Luigi Bianchi,et al. Lezioni sulla teoria dei gruppi continui finiti di transformazioni , 1919 .
[29] Leonard Eugene Dickson,et al. Differential Equations from the Group Standpoint , 1924 .
[30] A. Sändig,et al. Nonlinear Differential Equations , 1980 .
[31] S. Lie,et al. Vorlesungen über continuierliche Gruppen mit geometrischen und anderen Anwendungen / Sophus Lie ; bearbeitet und herausgegeben von Georg Scheffers. , 1893 .
[32] S. Lie,et al. Vorlesungen über Differentialgleichungen, mit bekannten infinitesimalen Transformationen , 1891 .