Group analysis of ordinary differential equations and the invariance principle in mathematical physics (for the 150th anniversary of Sophus Lie)

CONTENTSPrefaceChapter I. Definitions and elementary applications §1.1. One-parameter transformation groups §1.2. Prolongation formulae §1.3. Groups admissible by differential equations §1.4. Integration and reduction of order using one-parameter groups1.4.1. Integrating factor1.4.2. Method of canonical variables1.4.3. Invariant differentiation §1.5. Defining equations §1.6. Lie algebras §1.7. Contact transformationsChapter II. Integration of second-order equations admitting a two-dimensional algebra §2.1. Consecutive reduction of order2.1.1. An instructive example2.1.2. Solvable Lie algebras §2.2. The method of canonical variables2.2.1. Changes of variables and basis in an algebra2.2.2. Canonical form of two-dimensional algebras2.2.3. An integration algorithm2.2.4. An example of implementation of the algorithmChapter III. Group-theoretical classification of second-order equations §3.1. Equations admitting a three-dimensional algebra3.1.1. Classification in the complex domain3.1.2. Classification over the reals. Isomorphism and similarity §3.2. The general classification result §3.3. Two remarkable classes of equations3.3.1. The equation Linearizability criteria3.3.2. Equations Chapter IV. Ordinary differential equations with a fundamental system of solutions (following Vessiot-Guldberg-Lie) §4.1. The main theorem §4.2. Examples §4.3. Projective interpretation of the Riccati equation §4.4. Linearizable Riccati equationsChapter V. The invariance principle in problems of mathematical physics §5.1. Spherical functions §5.2. A group-theoretical touch to Riemann's method §5.3. Symmetry of fundamental solutions, or the first steps in group analysis in the space of distributions5.3.1. Something about distributions5.3.2. Laplace's equation5.3.3. The heat equation5.3.4. The wave equationChapter VI. Summary of resultsReferences

[1]  N. G. Parke,et al.  Ordinary Differential Equations. , 1958 .

[2]  B. Riemann über die Fortpflanzung ebener Luftwellen von endlicher Schwingungsweite , 1860 .

[3]  L. Michel,et al.  Classification of the symmetries of ordinary differential equations , 1991 .

[4]  J. Gillis,et al.  Nonlinear Partial Differential Equations in Engineering , 1967 .

[5]  G. Bluman,et al.  Symmetries and differential equations , 1989 .

[6]  L. Sedov Similarity and Dimensional Methods in Mechanics , 1960 .

[7]  V. Pukhnachev Invariant Solutions of the Navier-Stokes Equations Describing Motions with a Free Boundary. , 1972 .

[8]  H. Stephani Differential Equations: Their Solution Using Symmetries , 1990 .

[9]  NONLINEAR SUPERPOSITION FOR OPERATOR EQUATIONS , 1978 .

[10]  R. L. Anderson A nonlinear superposition principle admitted by coupled Riccati equations of the projective type , 1980 .

[11]  Fazal M. Mahomed,et al.  Lie algebras associated with scalar second-order ordinary differential equations , 1989 .

[12]  Mayrhofer Continuous groups of transformations , 1936 .

[13]  Nail H. Ibragimov,et al.  Lie-Backlund Transformations in Applications , 1987 .

[14]  A. Jamiołkowski Book reviewApplications of Lie groups to differential equations : Peter J. Olver (School of Mathematics, University of Minnesota, Minneapolis, U.S.A): Graduate Texts in Mathematics, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1986, XXVI+497pp. , 1989 .

[15]  S. Lie Theorie der Transformationsgruppen I , 1880 .

[16]  L. Eisenhart,et al.  Continuous groups of transformations , 1933 .

[17]  The hierarchy of Huygens equations in spaces with a non-trivial conformal group , 1991 .

[18]  E. Vessiot Sur une classe d'équations différentielles , 1893 .

[19]  W. Miller,et al.  Group analysis of differential equations , 1982 .

[20]  E. Copson On the Riemann-Green function , 1957 .

[21]  Choquet Bruhat,et al.  Analysis, Manifolds and Physics , 1977 .

[22]  S. Lie Classification und Integration von gewöhnlichen Differentialgleichungen zwischenxy, die eine Gruppe von Transformationen gestatten , 1888 .

[23]  G. Temple,et al.  GENERALIZED FUNCTIONS, VOL. I , 1965 .

[24]  N. Ibragimov Transformation groups applied to mathematical physics , 1984 .

[25]  Georg Scheffers,et al.  Geometrie der Berührungstransformationen , 1976 .

[26]  J. Leray Hyperbolic differential equations , 1953 .

[27]  Edmund Pinney,et al.  The nonlinear differential equation ”+()+⁻³=0 , 1950 .

[28]  Luigi Bianchi,et al.  Lezioni sulla teoria dei gruppi continui finiti di transformazioni , 1919 .

[29]  Leonard Eugene Dickson,et al.  Differential Equations from the Group Standpoint , 1924 .

[30]  A. Sändig,et al.  Nonlinear Differential Equations , 1980 .

[31]  S. Lie,et al.  Vorlesungen über continuierliche Gruppen mit geometrischen und anderen Anwendungen / Sophus Lie ; bearbeitet und herausgegeben von Georg Scheffers. , 1893 .

[32]  S. Lie,et al.  Vorlesungen über Differentialgleichungen, mit bekannten infinitesimalen Transformationen , 1891 .