Source coding for communication concentrators

Abstract : Communication concentrators perform the basic network function of merging many input flows into a single output flow. This requires formating the data and encoding side information about when messages start, what their lengths are and what their origins and destinations are. This thesis examines efficient ways of performing these functions, the objective being to minimize the average message delay, or some other queueing theoretic quantity, like the probability of buffer overflow. The work is divided in four parts; (1) encoding of the data; (2) encoding of message lengths; (3) encoding of message starting times; (4) encoding of message origins and destinations. With respect to data encoding, an algorithm is given to construct a prefix condition code that minimizes the probability of buffer overflow. Next a theory of variable length flags is developed and applied to the encoding of message lengths. For concentrators with synchronous output streams, it is shown that the concept of average number of protocol bits per message is meaningless. Thus, in order to analyze the encoding of message starting times, a class of flag strategies is considered in which there is a tradeoff between delay and low priority traffic.

[1]  Alvin W Drake,et al.  Observation of a Markov process through a noisy channel , 1962 .

[2]  R. A. Donnan,et al.  Synchronous Data Link Control: A Perspective , 1974, IBM Syst. J..

[3]  Patrick L. Odell,et al.  Digital Computer User's Handbook. , 1967 .

[4]  Samuel Karlin,et al.  A First Course on Stochastic Processes , 1968 .

[5]  A. Wyner On the Probability of Buffer Overflow Under an Arbitrary Bounded Input-Output Distribution , 1974 .

[6]  H. Kushner Introduction to stochastic control , 1971 .

[7]  D. A. Bell,et al.  Information Theory and Reliable Communication , 1969 .

[8]  Vinton G. Cerf Assessment of ARPANET protocols , 1974, RFC.

[9]  R. Gallager Information Theory and Reliable Communication , 1968 .

[10]  David C. van Voorhis,et al.  Optimal source codes for geometrically distributed integer alphabets (Corresp.) , 1975, IEEE Trans. Inf. Theory.

[11]  G. F. Newell,et al.  Introduction to the Theory of Queues. , 1963 .

[12]  Bernd Meister,et al.  Waiting Lines and Times in a System with Polling , 1974, JACM.

[13]  P. Schweitzer Iterative solution of the functional equations of undiscounted Markov renewal programming , 1971 .

[14]  S. Golomb Run-length encodings. , 1966 .

[15]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1967 .

[16]  Robert B. Cooper Queues served in cyclic order: Waiting times , 1970, Bell Syst. Tech. J..

[17]  J.K. Wolf,et al.  Computer-communication network design and analysis , 1979, Proceedings of the IEEE.

[18]  L. Schrage,et al.  Queueing systems, Vol. I: Theory , 1977, Proceedings of the IEEE.

[19]  J. Doob Stochastic processes , 1953 .

[20]  E. Newhall,et al.  A Simplified Analysis of Scan Times in an Asymmetrical Newhall Loop with Exhaustive Service , 1977, IEEE Trans. Commun..

[21]  D. Sworder,et al.  Introduction to stochastic control , 1972 .

[22]  John Ippocratis Capetanakis The multiple access broadcast channel : protocol and capacity considerations. , 1977 .

[23]  La Roy Tymes TYMNET: a terminal oriented communication network , 1971, AFIPS '71 (Spring).

[24]  David A. Huffman,et al.  A method for the construction of minimum-redundancy codes , 1952, Proceedings of the IRE.

[25]  W. Feller,et al.  An Introduction to Probability Theory and Its Application. , 1951 .

[26]  Loren K. Platzman,et al.  Finite memory estimation and control of finite probabilistic systems , 1977 .

[27]  W. Rudin Real and complex analysis , 1968 .

[28]  Martin Eisenberg,et al.  Queues with Periodic Service and Changeover Time , 1972, Oper. Res..

[29]  R. R. P. Jackson,et al.  Introduction to the Theory of Queues , 1963 .

[30]  IZHAK RUBIN Data compression for communication networks: The delay-distortion function , 1976, IEEE Trans. Inf. Theory.

[31]  Mario Gerla,et al.  On the Topological Design of Distributed Computer Networks , 1977, IEEE Trans. Commun..

[32]  Martin A. Leibowitz,et al.  An Approximate Method for Treating a Class of Multiqueue Problems , 1961, IBM J. Res. Dev..

[33]  Franklin F. Kuo,et al.  Computer-Communication Networks , 1973 .

[34]  Louis Pouzin,et al.  Presentation and major design aspects of the CYCLADES computer network , 1973, DATACOMM '73.

[35]  P. E. Jackson,et al.  Estimates of distributions of random variables for certain computer communications traffic models , 1969, Symposium on Problems in the Optimization of Data Communications Systems.

[36]  Peter Lancaster,et al.  The theory of matrices , 1969 .

[37]  Leonard Kleinrock,et al.  A study of line overhead in the Arpanet , 1976, CACM.

[38]  Ronald A. Howard,et al.  Dynamic Programming and Markov Processes , 1960 .

[39]  Donald Watts Davies,et al.  Communication Networks for Computers , 1973 .

[40]  Robert G. Gallager,et al.  A Minimum Delay Routing Algorithm Using Distributed Computation , 1977, IEEE Trans. Commun..

[41]  Robert B. Cooper,et al.  Queues served in cyclic order , 1969 .

[42]  Joseph B. Kruskal Work-scheduling algorithms: A nonprobabilistic queuing study (with possible application to no. 1 ESS) , 1969 .

[43]  J. Kingman Inequalities in the Theory of Queues , 1970 .

[44]  Adrian Segall,et al.  The Modeling of Adaptive Routing in Data-Communication Networks , 1977, IEEE Trans. Commun..

[45]  P.A.W. Lewis,et al.  Statistical Analysis of Series of Events in Computer Systems , 1972, Statistical Computer Performance Evaluation.

[46]  Amedeo R. Odoni,et al.  On Finding the Maximal Gain for Markov Decision Processes , 1969, Oper. Res..

[47]  J. Pieter M. Schalkwijk,et al.  On the error probability for a class of binary recursive feedback strategies , 1973, IEEE Trans. Inf. Theory.

[48]  Frederick Jelinek,et al.  On variable-length-to-block coding , 1972, IEEE Trans. Inf. Theory.

[49]  Robert Metcalfe,et al.  Function-oriented protocols for the ARPA computer network , 1899, AFIPS '72 (Spring).

[50]  Frederick Jelinek,et al.  Buffer overflow in variable length coding of fixed rate sources , 1968, IEEE Trans. Inf. Theory.