The Dawn of Black Holes

[1]  P. Evans,et al.  Constraints on the X-ray Luminosity Function of AGN at z = 5.7 − 6.4 with the Extragalactic Serendipitous Swift Survey , 2022, Monthly Notices of the Royal Astronomical Society.

[2]  A. Cimatti,et al.  Unveiling the Universe with emerging cosmological probes , 2022, Living Reviews in Relativity.

[3]  Xiaohui Fan,et al.  Deep XMM-Newton Observations of an X-ray Weak Broad Absorption Line Quasar at z = 6.5 , 2021, The Astrophysical Journal Letters.

[4]  S. Arnouts,et al.  GOLDRUSH. IV. Luminosity Functions and Clustering Revealed with ∼4,000,000 Galaxies at z ∼ 2–7: Galaxy–AGN Transition, Star Formation Efficiency, and Implication for Evolution at z > 10 , 2021, The Astrophysical Journal Supplement Series.

[5]  J. Comparat,et al.  The eROSITA Final Equatorial-Depth Survey (eFEDS). The AGN catalog and its X-ray spectral properties , 2021, Astronomy & Astrophysics.

[6]  L. Hernquist,et al.  The formation of the first quasars: The black hole seeds, accretion and feedback models , 2020, Monthly Notices of the Royal Astronomical Society.

[7]  A. Moretti,et al.  Minute-timescale Variability in the X-ray Emission of the Highest Redshift Blazar , 2021, The Astrophysical Journal.

[8]  T. Nagao,et al.  Subaru High-z Exploration of Low-luminosity Quasars (SHELLQs). XIV. A Candidate Type II Quasar at z = 6.1292 , 2021, The Astrophysical Journal.

[9]  L. Mayer,et al.  Light, medium-weight, or heavy? The nature of the first supermassive black hole seeds , 2021, Monthly Notices of the Royal Astronomical Society.

[10]  J. Bregman,et al.  A Chandra survey of z ≥ 4.5 quasars , 2021 .

[11]  G. Zamorani,et al.  Chandra and Magellan/FIRE follow-up observations of PSO167–13: An X-ray weak QSO at z = 6.515 , 2021, Astronomy & Astrophysics.

[12]  K. Omukai,et al.  Cosmological direct-collapse black hole formation sites hostile for their growth , 2021 .

[13]  S. Capozziello,et al.  Cosmography by orthogonalized logarithmic polynomials , 2021, Astronomy & Astrophysics.

[14]  H. Rottgering,et al.  First constraints on the AGN X-ray luminosity function at z ~ 6 from an eROSITA-detected quasar , 2021, Astronomy & Astrophysics.

[15]  Xiaohui Fan,et al.  A Luminous Quasar at Redshift 7.642 , 2021, 2101.03179.

[16]  A. King,et al.  High-redshift SMBHs can grow from stellar-mass seeds via chaotic accretion , 2021, 2101.00209.

[17]  S. Khochfar,et al.  Radiation hydrodynamical simulations of the birth of intermediate-mass black holes in the first galaxies , 2020, Monthly Notices of the Royal Astronomical Society.

[18]  L. Kelley,et al.  On the formation of direct collapse black hole seeds: Impact of gas spin and Lyman Werner flux , 2021 .

[19]  Xiaohui Fan,et al.  Revealing the Accretion Physics of Supermassive Black Holes at Redshift z ∼ 7 with Chandra and Infrared Observations , 2020, 2011.12458.

[20]  S. Fairhurst,et al.  Unveiling early black hole growth with multifrequency gravitational wave observations , 2020, Monthly Notices of the Royal Astronomical Society.

[21]  H. Rix,et al.  The X-SHOOTER/ALMA Sample of Quasars in the Epoch of Reionization. I. NIR Spectral Modeling, Iron Enrichment, and Broad Emission Line Properties , 2020, The Astrophysical Journal.

[22]  M. Volonteri,et al.  The mass assembly of high-redshift black holes , 2020, 2009.13505.

[23]  P. Natarajan A new channel to form IMBHs throughout cosmic time , 2020, 2009.09156.

[24]  P. K. Panda,et al.  GW190521: A Binary Black Hole Merger with a Total Mass of 150  M_{⊙}. , 2020, Physical review letters.

[25]  Xiaohui Fan,et al.  X-Ray Observations of a [C ii]-bright, z = 6.59 Quasar/Companion System , 2020, The Astrophysical Journal.

[26]  A. Myers,et al.  The Sloan Digital Sky Survey Quasar Catalog: Sixteenth Data Release , 2020, The Astrophysical Journal Supplement Series.

[27]  R. Sunyaev,et al.  SRG/eROSITA uncovers the most X-ray luminous quasar at z > 6 , 2020, 2007.04735.

[28]  Z. Haiman,et al.  Massive Star Formation in Metal-Enriched Haloes at High Redshift , 2020, 2006.14625.

[29]  Linhua Jiang,et al.  Pōniuā‘ena: A Luminous z = 7.5 Quasar Hosting a 1.5 Billion Solar Mass Black Hole , 2020, The Astrophysical Journal.

[30]  R. Klessen,et al.  The effects of a background potential in star cluster evolution , 2020, 2005.07807.

[31]  Ryan A. Jackson,et al.  Black hole mergers from dwarf to massive galaxies with the NewHorizon and Horizon-AGN simulations , 2020, Monthly Notices of the Royal Astronomical Society.

[32]  A. Moretti,et al.  The first blazar observed at z > 6 , 2020, Astronomy & Astrophysics.

[33]  K. Omukai,et al.  The Birth of a Massive First-star Binary , 2020, The Astrophysical Journal.

[34]  R. Maiolino,et al.  Universal bolometric corrections for active galactic nuclei over seven luminosity decades , 2020, Astronomy & Astrophysics.

[35]  K. Omukai,et al.  Supermassive star formation via super competitive accretion in slightly metal-enriched clouds , 2020, Monthly Notices of the Royal Astronomical Society.

[36]  L. Cowie,et al.  On the Absence of High-redshift AGNs: Little Growth in the Supermassive Black Hole Population at High Redshifts , 2020, The Astrophysical Journal.

[37]  D. Bizyaev,et al.  The final SDSS-IV/SPIDERS X-ray point source spectroscopic catalogue , 2019, Astronomy & Astrophysics.

[38]  C. Foot,et al.  AION: an atom interferometer observatory and network , 2019, Journal of Cosmology and Astroparticle Physics.

[39]  Yu Feng,et al.  The early growth of supermassive black holes in cosmological hydrodynamic simulations with constrained Gaussian realizations , 2019, Monthly Notices of the Royal Astronomical Society.

[40]  S. Capozziello,et al.  Quasars as standard candles-III. Validation of a new sample for cosmological studies , 2020 .

[41]  Z. Haiman,et al.  The Assembly of the First Massive Black Holes , 2019, 1911.05791.

[42]  A. Fontana,et al.  Space Densities and Emissivities of Active Galactic Nuclei at z > 4 , 2019, The Astrophysical Journal.

[43]  Xiaohui Fan,et al.  X-Ray Observations of a z ∼ 6.2 Quasar/Galaxy Merger , 2019, The Astrophysical Journal.

[44]  G. Zamorani,et al.  The X-ray properties of z > 6 quasars: no evident evolution of accretion physics in the first Gyr of the Universe , 2019, Astronomy & Astrophysics.

[45]  M. Paolillo,et al.  Tension with the flat ΛCDM model from a high-redshift Hubble diagram of supernovae, quasars, and gamma-ray bursts , 2019, Astronomy & Astrophysics.

[46]  D. Sijacki,et al.  Cosmological simulations of massive black hole seeds: predictions for next-generation electromagnetic and gravitational wave observations , 2019, 1906.11271.

[47]  F. Davies,et al.  Evidence for Low Radiative Efficiency or Highly Obscured Growth of z > 7 Quasars , 2019, The Astrophysical Journal.

[48]  G. Zamorani,et al.  Discovery of the first heavily obscured QSO candidate at z > 6 in a close galaxy pair , 2019, Astronomy & Astrophysics.

[49]  A. Merloni,et al.  Testing the disk-corona interplay in radiatively-efficient broad-line AGN , 2019, Astronomy & Astrophysics.

[50]  J. Garc'ia-Bellido,et al.  A common origin for baryons and dark matter , 2019, 1904.11482.

[51]  Masayuki Tanaka,et al.  Subaru High-z Exploration of Low-luminosity Quasars (SHELLQs). VI. Black Hole Mass Measurements of Six Quasars at 6.1 ≤ z ≤ 6.7 , 2019, The Astrophysical Journal.

[52]  K. Holley-Bockelmann,et al.  Where are the Intermediate Mass Black Holes , 2019, 1903.08144.

[53]  S. Bosman,et al.  New constraints on quasar evolution: broad-line velocity shifts over 1.5 ≲ z ≲ 7.5 , 2019, Monthly Notices of the Royal Astronomical Society.

[54]  D. Narayanan,et al.  simba: Cosmological simulations with black hole growth and feedback , 2019, Monthly Notices of the Royal Astronomical Society.

[55]  T. Downes,et al.  Formation of massive black holes in rapidly growing pre-galactic gas clouds , 2019, Nature.

[56]  J. Silk,et al.  High-redshift quasars and their host galaxies – I. Kinematical and dynamical properties and their tracers , 2019, Monthly Notices of the Royal Astronomical Society.

[57]  E. Lusso The nonlinear X‐ray/ultraviolet relation in active galactic nuclei: Contribution of instrumental effects on the X‐ray variability , 2018, Astronomische Nachrichten.

[58]  M. Colpi,et al.  Post-Newtonian evolution of massive black hole triplets in galactic nuclei – IV. Implications for LISA , 2018, Monthly Notices of the Royal Astronomical Society.

[59]  T. Downes,et al.  Super-Eddington accretion and feedback from the first massive seed black holes , 2018, Monthly Notices of the Royal Astronomical Society.

[60]  G. Risaliti,et al.  Cosmological constraints from the Hubble diagram of quasars at high redshifts , 2018, Nature Astronomy.

[61]  M. Volonteri,et al.  The hierarchical assembly of galaxies and black holes in the first billion years: predictions for the era of gravitational wave astronomy , 2018, Monthly Notices of the Royal Astronomical Society.

[62]  N. Yoshida,et al.  Growth of intermediate mass black holes by tidal disruption events in the first star clusters , 2018, Monthly Notices of the Royal Astronomical Society.

[63]  L. Ho,et al.  Gemini GNIRS Near-infrared Spectroscopy of 50 Quasars at z ≳ 5.7 , 2018, The Astrophysical Journal.

[64]  L. Mayer,et al.  The route to massive black hole formation via merger-driven direct collapse: a review , 2018, Reports on progress in physics. Physical Society.

[65]  N. Cornish,et al.  The construction and use of LISA sensitivity curves , 2018, Classical and Quantum Gravity.

[66]  S. Bisogni,et al.  Quasars as standard candles II The non-linear relation between UV and X-ray emission at high redshifts , 2019 .

[67]  J. Gunn,et al.  Subaru High-z Exploration of Low-luminosity Quasars (SHELLQs). V. Quasar Luminosity Function and Contribution to Cosmic Reionization at z = 6 , 2018, The Astrophysical Journal.

[68]  Xiaohui Fan,et al.  The Discovery of a Luminous Broad Absorption Line Quasar at a Redshift of 7.02 , 2018, The Astrophysical Journal.

[69]  P. Natarajan,et al.  The observational signatures of supermassive black hole seeds , 2018, Monthly Notices of the Royal Astronomical Society.

[70]  G. Richards,et al.  Steep Hard-X-Ray Spectra Indicate Extremely High Accretion Rates in Weak Emission-line Quasars , 2018, The Astrophysical Journal.

[71]  Yuan-zhong Zhang,et al.  Taiji program: Gravitational-wave sources , 2018, International Journal of Modern Physics A.

[72]  Xiaohui Fan,et al.  Chandra X-Rays from the Redshift 7.54 Quasar ULAS J1342+0928 , 2018, 1803.08105.

[73]  M. Mignoli,et al.  The 500 ks Chandra observation of the z = 6.31 QSO SDSS J1030 + 0524 , 2018, Astronomy & Astrophysics.

[74]  M. Volonteri,et al.  Chasing the observational signatures of seed black holes at z > 7: candidate observability , 2018, 1801.08165.

[75]  H. Rix,et al.  An ALMA [C ii] Survey of 27 Quasars at z > 5.94 , 2018, The Astrophysical Journal.

[76]  H. Rix,et al.  An 800-million-solar-mass black hole in a significantly neutral Universe at a redshift of 7.5 , 2017, Nature.

[77]  R. Schneider,et al.  Chasing the observational signatures of seed black holes at z > 7: candidate statistics , 2017, 1711.11033.

[78]  V. Springel,et al.  Supermassive black holes and their feedback effects in the IllustrisTNG simulation , 2017, Monthly Notices of the Royal Astronomical Society.

[79]  David O. Jones,et al.  The Complete Light-curve Sample of Spectroscopically Confirmed SNe Ia from Pan-STARRS1 and Cosmological Constraints from the Combined Pantheon Sample , 2017, The Astrophysical Journal.

[80]  D. Schneider,et al.  High-redshift AGN in the Chandra Deep Fields : The obscured fraction and space density of the sub-L * population , 2017, 1709.07892.

[81]  Elisabeta Lusso,et al.  A HUBBLE DIAGRAM FOR QUASARS , 2015, Front. Astron. Space Sci..

[82]  Y. Xue,et al.  The Chandra Deep Fields: Lifting the Veil on Distant Active Galactic Nuclei and X-Ray Emitting Galaxies , 2017, 1709.04601.

[83]  S. Mathur,et al.  The WISSH Quasars Project III. X-ray properties of hyper-luminous quasars , 2017, 1708.00452.

[84]  J. Silk,et al.  Massive black holes from dissipative dark matter , 2017, 1707.03419.

[85]  M. Volonteri,et al.  The sustainable growth of the first black holes , 2017, 1706.06592.

[86]  R. Klessen,et al.  The formation of direct collapse black holes under the influence of streaming velocities , 2017, 1705.02347.

[87]  K. Schawinski,et al.  BAT AGN Spectroscopic Survey (BASS) – VI. The ΓX–L/LEdd relation , 2017, 1705.01550.

[88]  W. Brandt,et al.  The X-ray properties of z ~ 6 luminous quasars , 2017, 1704.08693.

[89]  G. Risaliti,et al.  Quasars as standard candles. I. The physical relation between disc and coronal emission , 2017, 1703.05299.

[90]  A. Sa̧dowski,et al.  Kinetic and radiative power from optically thin accretion flows , 2017, 1701.07033.

[91]  O. Fèvre,et al.  The COSMOS2015 galaxy stellar mass function . Thirteen billion years of stellar mass assembly in ten snapshots , 2017, 1701.02734.

[92]  R. Schneider,et al.  Faint progenitors of luminous z ∼ 6 quasars: Why do not we see them? , 2016, 1612.04188.

[93]  Y. Dubois,et al.  Blossoms from black hole seeds: properties and early growth regulated by supernova feedback , 2016, 1605.09394.

[94]  S. Kaviraj,et al.  The Horizon-AGN simulation: evolution of galaxy properties over cosmic time , 2016, 1605.09379.

[95]  E. Zackrisson,et al.  Unveiling the First Black Holes With JWST:Multi-wavelength Spectral Predictions , 2016, 1610.05312.

[96]  Xiaohui Fan,et al.  THE FINAL SDSS HIGH-REDSHIFT QUASAR SAMPLE OF 52 QUASARS AT z > 5.7 , 2016, 1610.05369.

[97]  A. Comastri,et al.  Observational Signatures of High-Redshift Quasars and Local Relics of Black Hole Seeds , 2016, Publications of the Astronomical Society of Australia.

[98]  H. Rix,et al.  THE PAN-STARRS1 DISTANT z > 5.6 QUASAR SURVEY: MORE THAN 100 QUASARS WITHIN THE FIRST GYR OF THE UNIVERSE , 2016, 1608.03279.

[99]  Y. Wang,et al.  Exploring the sensitivity of next generation gravitational wave detectors , 2016, 1607.08697.

[100]  Michael D. Karcher,et al.  The Romulus cosmological simulations: a physical approach to the formation, dynamics and accretion models of SMBHs , 2016, 1607.02151.

[101]  K. Schawinski,et al.  THE CHANDRA COSMOS-LEGACY SURVEY: THE z > 3 SAMPLE , 2016, 1606.06813.

[102]  G. Richards,et al.  C iv emission-line properties and systematic trends in quasar black hole mass estimates , 2016, 1606.02726.

[103]  R. Schneider,et al.  Super-Eddington growth of the first black holes , 2016, 1603.00475.

[104]  W. Brandt,et al.  THE 2 Ms CHANDRA DEEP FIELD-NORTH SURVEY AND THE 250 Ks EXTENDED CHANDRA DEEP FIELD-SOUTH SURVEY: IMPROVED POINT-SOURCE CATALOGS , 2016, 1602.06299.

[105]  G. Risaliti,et al.  THE TIGHT RELATION BETWEEN X-RAY AND ULTRAVIOLET LUMINOSITY OF QUASARS , 2016, 1602.01090.

[106]  M. Volonteri,et al.  From the first stars to the first black holes , 2016, 1601.07915.

[107]  K. Schawinski,et al.  THE CHANDRA COSMOS LEGACY SURVEY: OVERVIEW AND POINT SOURCE CATALOG , 2016, 1601.00941.

[108]  Y. Dubois,et al.  On the number density of 'direct collapse' black hole seeds , 2016, 1601.00557.

[109]  N. Yoshida,et al.  Supermassive star formation via episodic accretion: protostellar disc instability and radiative feedback efficiency , 2015, 1511.06080.

[110]  Klaus Dolag,et al.  SZ effects in the Magneticum Pathfinder Simulation: Comparison with the Planck, SPT, and ACT results , 2015, 1509.05134.

[111]  R. Narayan,et al.  Three-dimensional simulations of supercritical black hole accretion discs - luminosities, photon trapping and variability , 2015, 1509.03168.

[112]  N. Battaglia,et al.  The BlueTides simulation: first galaxies and reionization , 2015, 1504.06619.

[113]  M. Valluri,et al.  Dark stars: a review , 2015, Reports on progress in physics. Physical Society.

[114]  B. Ehmer,et al.  THE CHANDRA DEEP FIELD-SOUTH SURVEY: 7 MS SOURCE CATALOGS , 2016 .

[115]  Yan Wang,et al.  TianQin: a space-borne gravitational wave detector , 2015, 1512.02076.

[116]  T. Dwelly,et al.  The X-ray luminosity function of active galactic nuclei in the redshift interval z=3-5 , 2015, 1507.07558.

[117]  R. Klessen,et al.  How an improved implementation of H2 self-shielding influences the formation of massive stars and black holes , 2015, 1505.00263.

[118]  R. Teyssier,et al.  Black hole evolution – I. Supernova-regulated black hole growth , 2015, 1504.00018.

[119]  Xiaohui Fan,et al.  An ultraluminous quasar with a twelve-billion-solar-mass black hole at redshift 6.30 , 2015, Nature.

[120]  D. Sijacki,et al.  Resolving flows around black holes: numerical technique and applications , 2015, 1502.03445.

[121]  J. Norris,et al.  Near-Field Cosmology with Extremely Metal-Poor Stars , 2015, 1501.06921.

[122]  M. Menzel,et al.  OBSCURATION-DEPENDENT EVOLUTION OF ACTIVE GALACTIC NUCLEI , 2015, 1501.02805.

[123]  M. Spaans,et al.  How realistic UV spectra and X-rays suppress the abundance of direct collapse black holes , 2014, 1408.3061.

[124]  S. White,et al.  The EAGLE project: Simulating the evolution and assembly of galaxies and their environments , 2014, 1407.7040.

[125]  R. Klessen,et al.  How an improved implementation of H 2 self-shielding influences the formation of massive stars and black holes , 2015 .

[126]  T. Greif The numerical frontier of the high-redshift Universe , 2014, 1410.3482.

[127]  M. Brusa,et al.  The hard X-ray luminosity function of high-redshift (3 < z ≲ 5) active galactic nuclei , 2014, 1409.6918.

[128]  Naoki Yoshida,et al.  THE ORIGIN OF THE MOST IRON-POOR STAR , 2014, 1409.4424.

[129]  M. Colpi Massive Binary Black Holes in Galactic Nuclei and Their Path to Coalescence , 2014, 1407.3102.

[130]  Z. Haiman,et al.  Direct collapse black hole formation from synchronized pairs of atomic cooling haloes , 2014, 1406.7020.

[131]  A. Ferrara,et al.  Initial mass function of intermediate-mass black hole seeds , 2014, 1406.6685.

[132]  M. Colpi,et al.  Constraining the high-redshift formation of black hole seeds in nuclear star clusters with gas inflows , 2014, 1406.2325.

[133]  A. Mesinger,et al.  Feedback-regulated supermassive black hole seed formation , 2014, 1405.6743.

[134]  V. Springel,et al.  Introducing the Illustris Project: simulating the coevolution of dark and visible matter in the Universe , 2014, 1405.2921.

[135]  P. Marziani,et al.  Highly accreting quasars: sample definition and possible cosmological implications , 2014, 1405.2727.

[136]  P. Natarajan Seeds to monsters: tracing the growth of black holes in the universe , 2014 .

[137]  E. Branchini,et al.  A NEW COSMOLOGICAL DISTANCE MEASURE USING ACTIVE GALACTIC NUCLEUS X-RAY VARIABILITY , 2014, 1404.2607.

[138]  P. Madau,et al.  SUPER-CRITICAL GROWTH OF MASSIVE BLACK HOLES FROM STELLAR-MASS SEEDS , 2014, 1402.6995.

[139]  M. Watson,et al.  TOWARD THE STANDARD POPULATION SYNTHESIS MODEL OF THE X-RAY BACKGROUND: EVOLUTION OF X-RAY LUMINOSITY AND ABSORPTION FUNCTIONS OF ACTIVE GALACTIC NUCLEI INCLUDING COMPTON-THICK POPULATIONS , 2014, 1402.1836.

[140]  P. Hewett,et al.  BLACK HOLE MASS ESTIMATES AND EMISSION-LINE PROPERTIES OF A SAMPLE OF REDSHIFT z > 6.5 QUASARS , 2013, 1311.3260.

[141]  J. Silk,et al.  Black hole evolution – III. Statistical properties of mass growth and spin evolution using large-scale hydrodynamical cosmological simulations , 2013, 1304.4583.

[142]  W. Schmidt,et al.  The characteristic black hole mass resulting from direct collapse in the early Universe , 2013, 1309.1097.

[143]  K. Schawinski,et al.  THE OBSCURED FRACTION OF ACTIVE GALACTIC NUCLEI IN THE XMM-COSMOS SURVEY: A SPECTRAL ENERGY DISTRIBUTION PERSPECTIVE , 2013, 1309.0814.

[144]  K. Schawinski,et al.  The Hot and Energetic Universe: The formation and growth of the earliest supermassive black holes , 2013, 1306.2325.

[145]  L. Ho,et al.  A statistical relation between the X-ray spectral index and Eddington ratio of active galactic nuclei in deep surveys , 2013, 1305.3917.

[146]  D. Valls-Gabaud,et al.  Super-Eddington accreting massive black holes as long-lived cosmological standards. , 2013, Physical review letters.

[147]  J. Silk,et al.  AGN-driven quenching of star formation: morphological and dynamical implications for early-type galaxies , 2013, 1301.3092.

[148]  M. Ruszkowski,et al.  Chaotic cold accretion on to black holes , 2013, 1301.3130.

[149]  M. Abramowicz,et al.  Foundations of Black Hole Accretion Disk Theory , 2011, Living reviews in relativity.

[150]  G. Hasinger,et al.  eROSITA science book: mapping the structure of the energetic universe , 2012, 1209.3114.

[151]  L. Ho,et al.  SPECTRAL ENERGY DISTRIBUTIONS OF TYPE 1 ACTIVE GALACTIC NUCLEI IN THE COSMOS SURVEY. I. THE XMM-COSMOS SAMPLE , 2012, 1209.1478.

[152]  S. Bose,et al.  Scientific objectives of Einstein Telescope , 2012, 1206.0331.

[153]  K. Omukai Do the environmental conditions affect the dust-induced fragmentation in low-metallicity clouds ?: Effect of pre-ionization and far-ultraviolet/cosmic-ray fields , 2012, 1205.0086.

[154]  L. G. Boté,et al.  Laser Interferometer Space Antenna , 2012 .

[155]  Yue Shen,et al.  COMPARING SINGLE-EPOCH VIRIAL BLACK HOLE MASS ESTIMATORS FOR LUMINOUS QUASARS , 2012, 1203.0601.

[156]  A. Petri,et al.  Supermassive black hole ancestors , 2012, 1202.3141.

[157]  T. Davis,et al.  A NEW COSMOLOGICAL DISTANCE MEASURE USING ACTIVE GALACTIC NUCLEI , 2011, 1109.4632.

[158]  Simone Bianchi,et al.  The first low‐mass stars: critical metallicity or dust‐to‐gas ratio? , 2011, 1109.2900.

[159]  Yu Feng,et al.  COLD FLOWS AND THE FIRST QUASARS , 2011, 1107.1253.

[160]  Richard G. McMahon,et al.  A luminous quasar at a redshift of z = 7.085 , 2011, Nature.

[161]  K. Inayoshi,et al.  Effect of cosmic ray/X-ray ionization on supermassive black hole formation , 2011, 1106.2812.

[162]  P. Natarajan The mass assembly history of black holes in the Universe , 2011, 1105.4902.

[163]  G. Richards,et al.  UNIFICATION OF LUMINOUS TYPE 1 QUASARS THROUGH C iv EMISSION , 2010, 1011.2282.

[164]  S. Bose,et al.  Sensitivity studies for third-generation gravitational wave observatories , 2010, 1012.0908.

[165]  A. Omont,et al.  EDDINGTON-LIMITED ACCRETION AND THE BLACK HOLE MASS FUNCTION AT REDSHIFT 6 , 2010, 1006.1342.

[166]  Marta Volonteri,et al.  Formation of supermassive black holes , 2010, 1003.4404.

[167]  J. Gair,et al.  Massive black holes lurking in Milky Way satellites , 2010, 1001.5451.

[168]  M. Salvato,et al.  The X-ray to optical-UV luminosity ratio of X-ray selected type 1 AGN in XMM-COSMOS , 2009, 0912.4166.

[169]  A. Sa̧dowski SLIM DISKS AROUND KERR BLACK HOLES REVISITED , 2009, 0906.0355.

[170]  Cambridge,et al.  Growing the first bright quasars in cosmological simulations of structure formation , 2009, 0905.1689.

[171]  R. Klessen,et al.  THE INFLUENCE OF MAGNETIC FIELDS ON THE THERMODYNAMICS OF PRIMORDIAL STAR FORMATION , 2009, 0904.3970.

[172]  J. Schaye,et al.  Cosmological simulations of the growth of supermassive black holes and feedback from active galactic nuclei: method and tests , 2009, 0904.2572.

[173]  Paul S. Smith,et al.  ACCEPTED FOR PUBLICATION IN THE ASTROPHYSICAL JOURNAL Preprint typeset using LATEX style emulateapj v. 04/20/08 HIGH-REDSHIFT SDSS QUASARS WITH WEAK EMISSION LINES , 2022 .

[174]  M. Haehnelt,et al.  Pathways to massive black holes and compact star clusters in pre-galactic dark matter haloes with virial temperatures ≳10 000 K , 2008, 0810.2802.

[175]  Z. Haiman,et al.  THE ASSEMBLY OF SUPERMASSIVE BLACK HOLES AT HIGH REDSHIFTS , 2008, 0807.4702.

[176]  Z. Haiman,et al.  Can Supermassive Black Holes Form in Metal-enriched High-Redshift Protogalaxies? , 2008, 0804.3141.

[177]  Shaun Cole,et al.  Generating dark matter halo merger trees , 2007, 0708.1382.

[178]  D. Schneider,et al.  The X-Ray Properties of the Most Luminous Quasars from the Sloan Digital Sky Survey , 2007, 0705.3059.

[179]  Astronomy,et al.  The mass function of high-redshift seed black holes , 2007, astro-ph/0702340.

[180]  Alberto Sesana,et al.  The imprint of massive black hole formation models on the LISA data stream , 2007, astro-ph/0701556.

[181]  Jarrett L. Johnson,et al.  The aftermath of the first stars: massive black holes , 2006, astro-ph/0605691.

[182]  I. McGreer,et al.  Discovery of a z = 6.1 Radio-Loud Quasar in the NOAO Deep Wide Field Survey , 2006, astro-ph/0607278.

[183]  K. Omukai,et al.  Fragmentation of star-forming clouds enriched with the first dust , 2006, astro-ph/0603766.

[184]  I. Strateva,et al.  The X-Ray-to-Optical Properties of Optically Selected Active Galaxies over Wide Luminosity and Redshift Ranges , 2006, astro-ph/0602407.

[185]  A. Szalay,et al.  Spectral Energy Distributions and Multiwavelength Selection of Type 1 Quasars , 2006, astro-ph/0601558.

[186]  W. N. B. randt,et al.  CHANDRA OBSERVATIONS OF THE HIGHEST REDSHIFT QUASARS FROM THE SLOAN DIGITAL SKY SURVEY , 2006 .

[187]  B. Carr Primordial Black Holes: Do They Exist and Are They Useful? , 2003, astro-ph/0511743.

[188]  J. Peacock,et al.  Simulations of the formation, evolution and clustering of galaxies and quasars , 2005, Nature.

[189]  V. Bromm Formation of the first stars , 2005, Proceedings of the International Astronomical Union.

[190]  K. Omukai,et al.  Thermal and Fragmentation Properties of Star-forming Clouds in Low-Metallicity Environments , 2005, astro-ph/0503010.

[191]  T. D. Matteo,et al.  Energy input from quasars regulates the growth and activity of black holes and their host galaxies , 2005, Nature.

[192]  Z. Haiman Constraints from Gravitational Recoil on the Growth of Supermassive Black Holes at High Redshift , 2004, astro-ph/0404196.

[193]  R. Maiolino,et al.  Local supermassive black holes, relics of active galactic nuclei and the X-ray background , 2003, astro-ph/0311619.

[194]  R. Salvaterra,et al.  Low-mass relics of early star formation , 2003, Nature.

[195]  K.Omukai,et al.  Formation of the First Stars by Accretion , 2003, astro-ph/0302345.

[196]  A. Merloni Beyond the standard accretion disc model: coupled magnetic disc–corona solutions with a physically motivated viscosity law , 2003, astro-ph/0302074.

[197]  Chris L. Fryer,et al.  How Massive Single Stars End Their Life , 2002, astro-ph/0212469.

[198]  Piero Madau,et al.  The Assembly and Merging History of Supermassive Black Holes in Hierarchical Models of Galaxy Formation , 2002, astro-ph/0207276.

[199]  M. Karovska,et al.  Quasar Parallax: A Method for Determining Direct Geometrical Distances to Quasars , 2002, astro-ph/0211385.

[200]  Z. Haiman,et al.  What Is the Highest Plausible Redshift of Luminous Quasars? , 2000, astro-ph/0011529.

[201]  K. Omukai Primordial Star Formation under Far-Ultraviolet Radiation , 2000, astro-ph/0011446.

[202]  F. Nicastro,et al.  Broad Emission Line Regions in Active Galactic Nuclei: The Link with the Accretion Power , 1999, The Astrophysical journal.

[203]  Edward L. Fitzpatrick,et al.  Correcting for the Effects of Interstellar Extinction , 1998, astro-ph/9809387.

[204]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[205]  J. Lasota,et al.  Slim Accretion Disks , 1988 .

[206]  J. Baldwin,et al.  Relative quasar luminosities determined from emission line strengths , 1978, Nature.

[207]  Nikolai I. Shakura,et al.  A Theory of the Instability of disk Accretion on to Black Holes and the Variability of Binary X-ray Sources, Galactic Nuclei and Quasars⋆ , 1976 .

[208]  L. Woltjer,et al.  QUASARS , 1973 .

[209]  Rashid Sunyaev,et al.  Black holes in binary systems. Observational appearance , 1973 .

[210]  Stephen W. Hawking,et al.  Gravitationally collapsed objects of very low mass , 1971 .

[211]  J. B. Oke Absolute Energy Distribution in the Optical Spectrum of 3C 273 , 1963, Nature.

[212]  A. Shimmins,et al.  Investigation of the Radio Source 3C 273 By The Method of Lunar Occultations , 1963, Nature.

[213]  M. Schmidt,et al.  3C 273 : A Star-Like Object with Large Red-Shift , 1963, Nature.

[214]  H. Bondi,et al.  On spherically symmetrical accretion , 1952 .

[215]  F. Hoyle,et al.  Accretion Theory of Stellar Evolution , 1941, Nature.