The electrochemical impedance of metal hydride electrodes

[1]  A. Lasia Applications of Electrochemical Impedance Spectroscopy to Hydrogen Adsorption, Evolution and Absorption into Metals , 2002 .

[2]  S. Fletcher The two-terminal equivalent network of a three-terminal electrochemical cell , 2001 .

[3]  J. Diard,et al.  Influence of particle size distribution on insertion processes in composite electrodes. Potential step and EIS theory: Part I. Linear diffusion , 2001 .

[4]  P. Grand Étude des processus impliquant l'hydrogène sur des films minces de palladium en milieu acide , 2001 .

[5]  M. Doyle,et al.  The Impedance Response of a Porous Electrode Composed of Intercalation Particles , 2000 .

[6]  L. Dao,et al.  The effect of pore size distribution on the frequency dispersion of porous electrodes , 2000 .

[7]  N. Krstajić,et al.  Electrochemical studies on LaNi4.15Co0.43Mn0.40Fe0.02 metal hydride alloy , 2000 .

[8]  L. O. Valøen Metal hydrides for rechargeable batteries , 2000 .

[9]  A. Lasia,et al.  Evaluation of the surface roughness of microporous Ni–Zn–P electrodes by in situ methods , 1999 .

[10]  A. Załuska,et al.  Nanocrystalline magnesium for hydrogen storage , 1999 .

[11]  L. Dao,et al.  Electrochemical impedance spectroscopy of porous electrodes: the effect of pore size distribution , 1999 .

[12]  B. Popov,et al.  Studies on metal hydride electrodes with different weights and binder contents , 1999 .

[13]  G. Lindbergh,et al.  Kinetic study of a porous metal hydride electrode , 1999 .

[14]  Jianqing Zhang,et al.  A mathematical model for electrochemical impedance spectroscopy (EIS) of metal hydride electrodes , 1998 .

[15]  Kenneth R. Bundy,et al.  An electrochemical impedance spectroscopy method for prediction of the state of charge of a nickel-metal hydride battery at open circuit and during discharge , 1998 .

[16]  Ralph E. White,et al.  Electrochemical investigations of bare and Pd-coated LaNi4.25Al0.75 electrodes in alkaline solution , 1998 .

[17]  B. Popov,et al.  Effect of temperature on performanceof LaNi4.76Sn0.24 metal hydride electrode’ , 1997 .

[18]  Svein Sunde,et al.  An impedance model for electrode processes in metal hydride electrodes , 1997 .

[19]  B. Popov,et al.  Determination of transport and electrochemical kinetic parameters of M-H electrodes , 1996 .

[20]  B. Popov,et al.  Application of Porous Electrode Theory on Metal Hydride Electrodes in Alkaline Solution , 1996 .

[21]  W. Hu,et al.  Hydrogen diffusion studies of microcrystalline and crystalline LaNi3.94Si0.54 films , 1995 .

[22]  H. Ploehn,et al.  AC Impedance Studies on Metal Hydride Electrodes , 1995 .

[23]  Ralph E. White,et al.  Electrochemical Determination of the Diffusion Coefficient of Hydrogen Through an LaNi4.25Al0.75 Electrode in Alkaline Aqueous Solution , 1995 .

[24]  G. Inzelt,et al.  Model dependence and reliability of the electrochemical quantities derived from the measured impedance spectra of polymer modified electrodes , 1994 .

[25]  Mark E. Orazem,et al.  Critical issues associated with interpretation of impedance spectra , 1994 .

[26]  C. Montella,et al.  Etude par spectroscopie d'impédance électrochimique de la diffusion restreinte dans un film bicouche : application à l'insertion de l'hydrogène dans des bifilms Pd/alliage de Pd , 1994 .

[27]  T. Sakai,et al.  Electrochemical impedance and deterioration behavior of metal hydride electrodes , 1993 .

[28]  S. Pyun,et al.  Theoretical approach to faradaic admittance of hydrogen absorption reaction on metal membrane electrode , 1993 .

[29]  K. Micka,et al.  Theory of the electrochemical impedance of macrohomogeneous porous electrodes , 1993 .

[30]  A. Lasia,et al.  Impedance studies of porous lanthanum-phosphate-bonded nickel electrodes in concentrated sodium hydroxide solution , 1993 .

[31]  T. Sakai,et al.  Characterization of metal hydride electrodes by means of electrochemical impedance spectroscopy , 1993 .

[32]  T. Sakai,et al.  Electrochemical Impedance Spectra and Deterioration Mechanism of Metal Hydride Electrodes , 1992 .

[33]  Louis Schlapbach,et al.  Surface properties and activation , 1992 .

[34]  R. Hempelmann,et al.  Dynamics of hydrogen in intermetallic hydrides , 1992 .

[35]  A. Boonstra,et al.  The effect of the electrolyte on the degradation process of LaNi5 electrodes , 1990 .

[36]  A. Pshenichnikov Electrocatalytic properties of nickel and nickel-based alloys , 1989 .

[37]  F. Manchester,et al.  Mechanisms for Activation of Intermetallic Hydrogen Absorbers , 1988 .

[38]  B. Conway,et al.  ac Impedance of Faradaic reactions involving electrosorbed intermediates—I. Kinetic theory , 1987 .

[39]  N. A. Hampson,et al.  Faradaic impedance measurements of small magnitudes encountered in high capacity electrical storage cells , 1985 .

[40]  P. Moran,et al.  Time‐Dependent Energy Efficiency Losses at Nickel Cathodes in Alkaline Water Electrolysis Systems , 1985 .

[41]  C. Schiller,et al.  Distortions of high frequency electrode impedance: Their causes and how to avoid them , 1984 .

[42]  D. Franceschetti,et al.  Small‐Signal A‐C Response Theory for Electrochromic Thin Films , 1982 .

[43]  A. Switendick The change in electronic properties on hydrogen alloying and hydride formation , 1978 .

[44]  M. Pourbaix Atlas of Electrochemical Equilibria in Aqueous Solutions , 1974 .

[45]  Brian E. Conway,et al.  Modern Aspects of Electrochemistry , 1974 .

[46]  D. M. Ellis,et al.  Applied Regression Analysis , 1968 .

[47]  P. Delahay,et al.  Advances in Electrochemistry and Electrochemical Engineering , 1964 .