Number and topography of cones, rods and optic nerve axons in New and Old World primates

To better understand the evolution of spatial and color vision, the number and spatial distributions of cones, rods, and optic nerve axon numbers were assessed in seven New World primates (Cebus apella, Saimiri ustius, Saguinus midas niger, Alouatta caraya, Aotus azarae, Calllithrix jacchus, and Callicebus moloch). The spatial distribution and number of rods and cones was determined from counts of retinal whole mounts. Optic axon number was determined from optic nerve sections by electron microscopy. These data were amassed with existing data on retinal cell number and distribution in Old World primates, and the scaling of relative densities and numbers with respect to retinal area, eye and brain sizes, and foveal specializations were evaluated. Regular scaling of all cell types was observed, with the exceptionally large, rod-enriched retina of the nocturnal owl monkey Aotus azarae, and the unusually high cone density of the fovea of the trichromatic howler monkey Alouatta caraya presenting interesting variations on this basic plan. Over all species, the lawful scaling of rods, cones, and retinal ganglion cell number is hypothesized to result from a conserved sequence of cell generation that defends retinal acuity and sensitivity over a large range of eye sizes.

[1]  G. H. Jacobs,et al.  Mutations in S-cone pigment genes and the absence of colour vision in two species of nocturnal primate , 1996, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[2]  Q. Fischer,et al.  Number and distribution of retinal ganglion cells in anubis baboons (Papio anubis). , 1991, Brain, behavior and evolution.

[3]  V. Perry,et al.  The retinal ganglion cell distribution and the representation of the visual field in area 17 of the owl monkey, Aotus trivirgatus , 1993, Visual Neuroscience.

[4]  B. B. Lee,et al.  Topography of ganglion cells and photoreceptors in the retina of a New World monkey: The marmoset Callithrix jacchus , 1996, Visual Neuroscience.

[5]  G. H. Jacobs Photopigments and seeing--lessons from natural experiments: the Proctor lecture. , 1998, Investigative ophthalmology & visual science.

[6]  J. Neitz,et al.  Recent evolution of uniform trichromacy in a New World monkey , 1998, Vision Research.

[7]  B. Finlay,et al.  Comparative Aspects of Visual System Development , 2006 .

[8]  J. Gerhart,et al.  Cells, Embryos and Evolution , 1997 .

[9]  J. Naito Morphological and quantitative analysis of the fascicular pattern of monkey optic nerve , 1996, Cell and Tissue Research.

[10]  H. Frahm,et al.  New and revised data on volumes of brain structures in insectivores and primates. , 1981, Folia primatologica; international journal of primatology.

[11]  David Troilo,et al.  Visual optics and retinal cone topography in the common marmoset (Callithrix jacchus) , 1993, Vision Research.

[12]  B. Finlay,et al.  The specialization of the owl monkey retina for night vision , 2001 .

[13]  Robert W. Williams,et al.  Photoreceptor mosaic: Number and distribution of rods and cones in the rhesus monkey retina , 1990, The Journal of comparative neurology.

[14]  Callum F. Ross,et al.  Into the Light: The Origin of Anthropoidea , 2000 .

[15]  C. Ross,et al.  Evolution of activity patterns and chromatic vision in primates: morphometrics, genetics and cladistics. , 2001, Journal of human evolution.

[16]  B. Finlay,et al.  3.05 – Cortical Evolution as the Expression of a Program for Disproportionate Growth and the Proliferation of Areas , 2007 .

[17]  P. Rakić,et al.  Cytogenesis in the monkey retina , 1991, The Journal of comparative neurology.

[18]  A. Cowey,et al.  The ganglion cell and cone distributions in the monkey's retina: Implications for central magnification factors , 1985, Vision Research.

[19]  D. Boire,et al.  Size and distribution of retinal ganglion cells in the St. Kitts green monkey (Cercopithecus aethiops sabeus) , 1997, The Journal of comparative neurology.

[20]  P. Rakic,et al.  Regulation of axon number in primate optic nerve by prenatal binocular competition , 1983, Nature.

[21]  H. Schneider The current status of the New World monkey phylogeny. , 2000, Anais da Academia Brasileira de Ciencias.

[22]  T. Ogden The receptor mosaic of Aotes trivirgatus: Distribution of rods and cones , 1975, The Journal of comparative neurology.

[23]  R. Freeman,et al.  Developmental Neurobiology of Vision , 1979, NATO Advanced Study Institutes Series.

[24]  C A Curcio,et al.  Developmental redistribution of photoreceptors across the Macaca nemestrina (pigtail macaque) retina , 1990, The Journal of comparative neurology.

[25]  M. Goodman,et al.  Molecular phylogeny of the New World monkeys (Platyrrhini, primates) based on two unlinked nuclear genes: IRBP intron 1 and epsilon-globin sequences. , 1996, American journal of physical anthropology.

[26]  P. Rakić,et al.  Distribution of photoreceptor subtypes in the retina of diurnal and nocturnal primates , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[27]  A. Hendrickson,et al.  Photoreceptor topography of the retina in the adult pigtail macaque (Macaca nemestrina) , 1989, The Journal of comparative neurology.

[28]  J. Jonas,et al.  Human optic nerve fiber count and optic disc size. , 1992, Investigative ophthalmology & visual science.

[29]  B. Finlay,et al.  Conservation of Absolute Foveal Area in New World Monkeys , 2000, Brain, Behavior and Evolution.

[30]  B. E. Reese,et al.  Axon diameter distributions across the monkey's optic nerve , 1988, Neuroscience.

[31]  Christine A. Curcio,et al.  A whole mount method for sequential analysis of photoreceptor and ganglion cell topography in a single retina , 1987, Vision Research.

[32]  John Cohen,et al.  EMBRYOS AND EVOLUTION , 1982 .

[33]  Arthur H. Keeney,et al.  The Wholemount Handbook. A Guide to the Preparation and Analysis of Retinal Wholemounts. , 1981 .

[34]  B. Dreher,et al.  Nonuniform retinal expansion during the formation of the rabbit's visual streak: Implications for the ontogeny of mammalian retinal topography , 1989, Visual Neuroscience.

[35]  M. Goodman,et al.  Molecular phylogeny of the New World monkeys (Platyrrhini, primates). , 1993, Molecular phylogenetics and evolution.

[36]  A. Hendrickson,et al.  Primate foveal development: a microcosm of current questions in neurobiology. , 1994, Investigative ophthalmology & visual science.

[37]  E. Polley,et al.  Neurogenesis and Maturation of Cell Morphology in the Development of the Mammalian Retina , 1989 .

[38]  B. Finlay,et al.  Development of the Vertebrate Retina , 2012, Perspectives in Vision Research.

[39]  S. Worthington,et al.  Primate evolution and adaptation , 2003 .

[40]  Lin Wang,et al.  Estimating normal optic nerve axon numbers in non-human primate eyes. , 2002, Journal of glaucoma.

[41]  R. Fernald,et al.  Rod photoreceptor neurogenesis , 1997, Progress in Retinal and Eye Research.

[42]  B. Finlay,et al.  Linked regularities in the development and evolution of mammalian brains. , 1995, Science.

[43]  P. R. Johns Growth and Neurogenesis in Adult Goldfish Retina , 1979 .

[44]  J. C. Pieczarka,et al.  Proposed chromosomal phylogeny for the South American primates of the Callitrichidae family (Platyrrhini) , 1999, American journal of primatology.

[45]  B. Finlay,et al.  The course of human events: predicting the timing of primate neural development , 2000 .

[46]  A. Hendrickson,et al.  Human photoreceptor topography , 1990, The Journal of comparative neurology.

[47]  B. A. D. Costa,et al.  Photoreceptor topography of the retina in the New World monkey Cebus apella , 2000, Vision Research.