Lidar sampling for large-area forest characterization: A review

[1]  William G. Cochran,et al.  Sampling Techniques, 3rd Edition , 1963 .

[2]  W. Krabill,et al.  Using airborne lasers to estimate forest canopy and stand characteristics. , 1988 .

[3]  Carl-Erik Särndal,et al.  Model Assisted Survey Sampling , 1997 .

[4]  T. Gregoire Design-based and model-based inference in survey sampling: appreciating the difference , 1998 .

[5]  Emmanuel P. Baltsavias,et al.  Airborne laser scanning: basic relations and formulas , 1999 .

[6]  J. Blair,et al.  The Laser Vegetation Imaging Sensor: a medium-altitude, digitisation-only, airborne laser altimeter for mapping vegetation and topography , 1999 .

[7]  R. Dubayah,et al.  Lidar Remote Sensing for Forestry , 2000, Journal of Forestry.

[8]  Gordon B. Stenhouse,et al.  Change detection and landscape structure mapping using remote sensing , 2002 .

[9]  W. Cohen,et al.  Lidar Remote Sensing for Ecosystem Studies , 2002 .

[10]  Mukunda Dev Behera,et al.  Lidar remote sensing for forestry applications: The Indian context , 2002 .

[11]  W. Cohen,et al.  Integration of lidar and Landsat ETM+ data for estimating and mapping forest canopy height , 2002 .

[12]  H. Zwally,et al.  Overview of ICESat's Laser Measurements of Polar Ice, Atmosphere, Ocean, and Land , 2002 .

[13]  E. Næsset Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data , 2002 .

[14]  R. Dubayah,et al.  Above-ground biomass estimation in closed canopy Neotropical forests using lidar remote sensing: factors affecting the generality of relationships , 2003 .

[15]  R. Nelson,et al.  A Multiple Resource Inventory of Delaware Using Airborne Laser Data , 2003 .

[16]  J. Kerr,et al.  From space to species: ecological applications for remote sensing , 2003 .

[17]  R. Lucas,et al.  A review of remote sensing technology in support of the Kyoto Protocol , 2003 .

[18]  R. Birdsey,et al.  National-Scale Biomass Estimators for United States Tree Species , 2003, Forest Science.

[19]  Ross Nelson,et al.  A Portable Airborne Laser System for Forest Inventory , 2003 .

[20]  M. Flood,et al.  LiDAR remote sensing of forest structure , 2003 .

[21]  D. Curran‐Everett,et al.  Guidelines for reporting statistics in journals published by the American Physiological Society. , 2004, American journal of physiology. Regulatory, integrative and comparative physiology.

[22]  E. Næsset Accuracy of forest inventory using airborne laser scanning: evaluating the first nordic full-scale operational project , 2004 .

[23]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[24]  Ross Nelson,et al.  Measuring biomass and carbon in delaware using an airborne profiling LIDAR , 2004 .

[25]  E. Næsset Practical large-scale forest stand inventory using a small-footprint airborne scanning laser , 2004 .

[26]  E. Næsset,et al.  Laser scanning of forest resources: the nordic experience , 2004 .

[27]  K. Kraus,et al.  FROM SINGLE-PULSE TO FULL-WAVEFORM AIRBORNE LASER SCANNERS: POTENTIAL AND PRACTICAL CHALLENGES , 2004 .

[28]  Randolph H. Wynne,et al.  Fusion of Small-Footprint Lidar and Multispectral Data to Estimate Plot- Level Volume and Biomass in Deciduous and Pine Forests in Virginia, USA , 2004, Forest Science.

[29]  Erik Næsset,et al.  Effects of different flying altitudes on biophysical stand properties estimated from canopy height and density measured with a small-footprint airborne scanning laser , 2004 .

[30]  Douglas Curran-Everett,et al.  Guidelines for reporting statistics in journals published by the American Physiological Society. , 2004, Physiological genomics.

[31]  Robert C. Parker,et al.  An Application of LiDAR in a Double-Sample Forest Inventory , 2004 .

[32]  W. Cohen,et al.  Estimates of forest canopy height and aboveground biomass using ICESat , 2005 .

[33]  Erik Næsset,et al.  Assessing sensor effects and effects of leaf-off and leaf-on canopy conditions on biophysical stand properties derived from small-footprint airborne laser data , 2005 .

[34]  Ross Nelson,et al.  Locating and estimating the extent of Delmarva fox squirrel habitat using an airborne LiDAR profiler , 2005 .

[35]  H. Zwally,et al.  Overview of the ICESat Mission , 2005 .

[36]  Asa Persson,et al.  VISUALIZATION AND ANALYSIS OF FULL-WAVEFORM AIRBORNE LASER SCANNER DATA , 2005 .

[37]  F. Raulier,et al.  Canadian national tree aboveground biomass equations , 2005 .

[38]  J. Abshire,et al.  Geoscience Laser Altimeter System (GLAS) on the ICESat Mission: On‐orbit measurement performance , 2005 .

[39]  W. Wagner,et al.  Gaussian decomposition and calibration of a novel small-footprint full-waveform digitising airborne laser scanner , 2006 .

[40]  Nicholas C. Coops,et al.  Assessment of forest structure with airborne LiDAR and the effects of platform altitude , 2006 .

[41]  Robert G. Knox,et al.  The use of waveform lidar to measure northern temperate mixed conifer and deciduous forest structure in New Hampshire , 2006 .

[42]  Keqi Zhang,et al.  Mapping Height and Biomass of Mangrove Forests in Everglades National Park with SRTM Elevation Data , 2006 .

[43]  David R. Cox,et al.  The Oxford Dictionary of Statistical Terms , 2006 .

[44]  W. Walker,et al.  Mapping forest structure for wildlife habitat analysis using multi-sensor (LiDAR, SAR/InSAR, ETM+, Quickbird) synergy , 2006 .

[45]  Johan E. S. Fransson,et al.  Effects on estimation accuracy of forest variables using different pulse density of laser data , 2007 .

[46]  Michael A. Lefsky,et al.  Revised method for forest canopy height estimation from Geoscience Laser Altimeter System waveforms , 2007 .

[47]  C. Hopkinson The influence of flying altitude, beam divergence, and pulse repetition frequency on laser pulse return intensity and canopy frequency distribution , 2007 .

[48]  Robert C. Parker,et al.  Stratified Light Detection and Ranging Double-Sample Forest Inventory , 2007 .

[49]  Joanne C. White,et al.  Integrating profiling LIDAR with Landsat data for regional boreal forest canopy attribute estimation and change characterization , 2007 .

[50]  N. Coops,et al.  Update of forest inventory data with lidar and high spatial resolution satellite imagery , 2008 .

[51]  J. Reitberger,et al.  Analysis of full waveform LIDAR data for the classification of deciduous and coniferous trees , 2008 .

[52]  N. Coops,et al.  Stability of Surface LiDAR Height Estimates on a Point and Polygon Basis( Silvilaser) , 2008 .

[53]  Göran Ståhl,et al.  Regional Forest Inventory using an Airborne Profiling LiDAR( Silvilaser) , 2008 .

[54]  R. Nelson,et al.  Regional aboveground forest biomass using airborne and spaceborne LiDAR in Québec. , 2008 .

[55]  Joanne C. White,et al.  The role of LiDAR in sustainable forest management , 2008 .

[56]  Yichun Xie,et al.  Remote sensing imagery in vegetation mapping: a review , 2008 .

[57]  S. Goetz,et al.  Reply to Comment on ‘A first map of tropical Africa’s above-ground biomass derived from satellite imagery’ , 2008, Environmental Research Letters.

[58]  Terje Gobakken,et al.  Assessing effects of laser point density, ground sampling intensity, and field sample plot size on biophysical stand properties derived from airborne laser scanner data , 2008 .

[59]  M. Holopainen,et al.  Forest Inventory Using Small-Footprint Airborne Lidar , 2008 .

[60]  Barbara Koch,et al.  Quantifying the influence of slope, aspect, crown shape and stem density on the estimation of tree height at plot level using lidar and InSAR data , 2008 .

[61]  W. Wagner,et al.  Area-based parameterization of forest structure using full-waveform airborne laser scanning data. , 2008 .

[62]  W. Wagner,et al.  3D vegetation mapping using small‐footprint full‐waveform airborne laser scanners , 2008 .

[63]  Ross Nelson,et al.  Model effects on GLAS-based regional estimates of forest biomass and carbon , 2010 .

[64]  Peter R. J. North,et al.  Vegetation height estimates for a mixed temperate forest using satellite laser altimetry , 2008 .

[65]  Göran Ståhl,et al.  Estimating Quebec provincial forest resources using ICESat/GLAS , 2009 .

[66]  Michael A. Lefsky,et al.  Biomass accumulation rates of Amazonian secondary forest and biomass of old-growth forests from Landsat time series and the Geoscience Laser Altimeter System , 2009 .

[67]  Chengquan Huang,et al.  Regional forest growth rates measured by combining ICESat GLAS and Landsat data , 2009 .

[68]  R. Nelson,et al.  Estimating Siberian timber volume using MODIS and ICESat/GLAS. , 2009 .

[69]  Tian Han,et al.  Characterizing boreal forest wildfire with multi-temporal Landsat and LIDAR data , 2009 .

[70]  Peter Scarth,et al.  Prediction and validation of foliage projective cover from Landsat-5 TM and Landsat-7 ETM+ imagery , 2009 .

[71]  Terje Gobakken,et al.  Sampling and Mapping Forest Volume and Biomass Using Airborne LIDARs , 2009 .

[72]  E. Næsset Effects of different sensors, flying altitudes, and pulse repetition frequencies on forest canopy metrics and biophysical stand properties derived from small-footprint airborne laser data , 2009 .

[73]  Erik Næsset,et al.  Influence of terrain model smoothing and flight and sensor configurations on detection of small pioneer trees in the boreal-alpine transition zone utilizing height metrics derived from airborne scanning lasers. , 2009 .

[74]  Alan H. Strahler,et al.  Assessing general relationships between aboveground biomass and vegetation structure parameters for improved carbon estimate from lidar remote sensing , 2009 .

[75]  Terje Gobakken,et al.  Estimating spruce and pine biomass with interferometric X-band SAR , 2010 .

[76]  E. Tomppo National Forest Inventories : pathways for common reporting , 2010 .

[77]  Michael A. Wulder,et al.  Estimating forest canopy height and terrain relief from GLAS waveform metrics , 2010 .

[78]  Philip Lewis,et al.  Simulating the impact of discrete-return lidar system and survey characteristics over young conifer and broadleaf forests , 2010 .

[79]  Kerrie Mengersen,et al.  Motivation, development and validation of a new spectral greenness index: a spectral dimension related to foliage projective cover , 2010 .

[80]  G. Powell,et al.  High-resolution forest carbon stocks and emissions in the Amazon , 2010, Proceedings of the National Academy of Sciences.

[81]  Peter Bergamaschi,et al.  Inverse modeling of European CH4 emissions 2001-2006 , 2010 .

[82]  Junjie Zhang,et al.  An improved method for estimating forest canopy height using ICESat-GLAS full waveform data over sloping terrain: A case study in Changbai mountains, China , 2010, Int. J. Appl. Earth Obs. Geoinformation.

[83]  George C. Hurtt,et al.  Linking models and data on vegetation structure , 2010 .

[84]  J. Hyyppä,et al.  Range and AGC normalization in airborne discrete-return LiDAR intensity data for forest canopies , 2010 .

[85]  Virpi Junttila,et al.  Estimation of forest stand parameters from airborne laser scanning using calibrated plot databases. , 2010 .

[86]  M. Lefsky,et al.  Forest carbon densities and uncertainties from Lidar, QuickBird, and field measurements in California , 2010 .

[87]  T. Brandeis,et al.  Mapping tropical dry forest height, foliage height profiles and disturbance type and age with a time series of cloud-cleared Landsat and ALI image mosaics to characterize avian habitat , 2010 .

[88]  M. Lefsky A global forest canopy height map from the Moderate Resolution Imaging Spectroradiometer and the Geoscience Laser Altimeter System , 2010 .

[89]  Erik Næsset,et al.  Effects of different sensors and leaf-on and leaf-off canopy conditions on echo distributions and individual tree properties derived from airborne laser scanning , 2010 .

[90]  Scott J. Goetz,et al.  Synergistic use of spaceborne lidar and optical imagery for assessing forest disturbance: An Alaska case study , 2010 .

[91]  Wenze Yang,et al.  Physically based vertical vegetation structure retrieval from ICESat data: Validation using LVIS in White Mountain National Forest, New Hampshire, USA , 2011 .

[92]  F. Bongers,et al.  Estimating carbon stock in secondary forests: Decisions and uncertainties associated with allometric biomass models , 2011 .

[93]  Thomas Hilker,et al.  Stability of Sample-Based Scanning-LiDAR-Derived Vegetation Metrics for Forest Monitoring , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[94]  Göran Ståhl,et al.  Model-assisted estimation of biomass in a LiDAR sample survey in Hedmark County, NorwayThis article is one of a selection of papers from Extending Forest Inventory and Monitoring over Space and Time. , 2011 .

[95]  David J. Harding,et al.  Polarimetric, two-color, photon-counting laser altimeter measurements of forest canopy structure , 2011, International Symposium on Lidar and Radar Mapping Technologies.

[96]  K. O. Niemann,et al.  Simulated impact of sample plot size and co-registration error on the accuracy and uncertainty of LiDAR-derived estimates of forest stand biomass , 2011 .

[97]  R. Nelson,et al.  Model-based inference for biomass estimation in a LiDAR sample survey in Hedmark County, Norway , 2011 .

[98]  Nicolas Barbier,et al.  Bidirectional texture function of high resolution optical images of tropical forest: An approach using LiDAR hillshade simulations , 2011 .

[99]  S. Goetz The lost promise of DESDynI , 2011 .

[100]  Jacob Strunk,et al.  Using Airborne Light Detection and Ranging as a Sampling Tool for Estimating Forest Biomass Resources in the Upper Tanana Valley of Interior Alaska , 2011 .

[101]  Mark O. Kimberley,et al.  Airborne scanning LiDAR in a double sampling forest carbon inventory , 2012 .

[102]  Göran Ståhl,et al.  Assessing the accuracy of regional LiDAR-based biomass estimation using a simulation approach , 2012 .

[103]  Göran Ståhl,et al.  Estimating biomass in Hedmark County, Norway using national forest inventory field plots and airborne laser scanning , 2012 .

[104]  Terje Gobakken,et al.  Lidar sampling — Using an airborne profiler to estimate forest biomass in Hedmark County, Norway , 2012 .