Intrinsic ferroelectric switching from first principles

[1]  Shi Liu,et al.  Asymmetric Response of Ferroelastic Domain-Wall Motion under Applied Bias. , 2016, ACS applied materials & interfaces.

[2]  Fan Zheng,et al.  Ferroelectric Domain Wall Induced Band Gap Reduction and Charge Separation in Organometal Halide Perovskites. , 2015, The journal of physical chemistry letters.

[3]  Jorge Íñiguez,et al.  Ferroelectric transitions at ferroelectric domain walls found from first principles. , 2014, Physical review letters.

[4]  L. Martin,et al.  Stationary domain wall contribution to enhanced ferroelectric susceptibility , 2014, Nature Communications.

[5]  Chang-Beom Eom,et al.  Atomic-scale mechanisms of ferroelastic domain-wall-mediated ferroelectric switching , 2013, Nature Communications.

[6]  Shi Liu,et al.  Exploration of the intrinsic inertial response of ferroelectric domain walls via molecular dynamics simulations , 2013, 1307.6945.

[7]  Xiaoqing Pan,et al.  BiFeO3 domain wall energies and structures: a combined experimental and density functional theory+U study. , 2013, Physical review letters.

[8]  Yurong Yang,et al.  Ferroelectric domains in multiferroic BiFeO3 films under epitaxial strains. , 2013, Physical review letters.

[9]  A. Herklotz,et al.  Strain controlled ferroelectric switching time of BiFeO3 capacitors , 2012 .

[10]  Jacob L. Jones,et al.  Domains, Domain Walls and Defects in Perovskite Ferroelectric Oxides: A Review of Present Understanding and Recent Contributions , 2012 .

[11]  Shi Liu,et al.  Reinterpretation of the bond-valence model with bond-order formalism: An improved bond-valence-based interatomic potential for PbTiO 3 , 2012, 1211.5166.

[12]  J. Junquera,et al.  Domain walls in a perovskite oxide with two primary structural order parameters: first-principles study of BiFeO$_3$ , 2012, 1211.5116.

[13]  L. Martin,et al.  Pyroelectric properties of polydomain epitaxial Pb(Zr 1-x ,Ti x )O 3 thin films , 2011 .

[14]  Sergei V. Kalinin,et al.  Reduced Coercive Field in BiFeO3 Thin Films Through Domain Engineering , 2011, Advanced materials.

[15]  H. N. Lee,et al.  ac dynamics of ferroelectric domains from an investigation of the frequency dependence of hysteresis loops , 2010, 1001.5195.

[16]  Sergei V. Kalinin,et al.  Conduction at domain walls in oxide multiferroics. , 2009, Nature materials.

[17]  H. N. Lee,et al.  Nonlinear dynamics of domain-wall propagation in epitaxial ferroelectric thin films. , 2009, Physical review letters.

[18]  R. Waser,et al.  Dynamics of ferroelectric nanodomains in BaTiO3 epitaxial thin films via piezoresponse force microscopy , 2008, Nanotechnology.

[19]  Donald G Truhlar,et al.  Construction of a generalized gradient approximation by restoring the density-gradient expansion and enforcing a tight Lieb-Oxford bound. , 2008, The Journal of chemical physics.

[20]  G. Scuseria,et al.  Restoring the density-gradient expansion for exchange in solids and surfaces. , 2007, Physical review letters.

[21]  A. Rappe,et al.  Nucleation and growth mechanism of ferroelectric domain-wall motion , 2007, Nature.

[22]  A. Rappe,et al.  Development of a bond-valence molecular-dynamics model for complex oxides , 2005 .

[23]  University of Geneva,et al.  Nanoscale studies of domain wall motion in epitaxial ferroelectric thin films , 2004, cond-mat/0411178.

[24]  J. Rino,et al.  90° domain wall relaxation and frequency dependence of the coercive field in the ferroelectric switching process , 2003, cond-mat/0311162.

[25]  R. Ramesh,et al.  Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures , 2003, Science.

[26]  Technology,et al.  Domain wall creep in epitaxial ferroelectric Pb(Zr(0.2)Ti(0.08)O(3) thin films. , 2002, Physical review letters.

[27]  Pavel M. Chaplya,et al.  Dielectric and piezoelectric response of lead zirconate–lead titanate at high electric and mechanical loads in terms of non-180° domain wall motion , 2001 .

[28]  L. Kong,et al.  PZT ceramics formed directly from oxides via reactive sintering , 2001 .

[29]  D. Vanderbilt,et al.  Ab initio study of ferroelectric domain walls in PbTiO 3 , 2001, cond-mat/0109257.

[30]  M. Lente,et al.  90° domain reorientation and domain wall rearrangement in lead zirconate titanate ceramics characterized by transient current and hysteresis loop measurements , 2001 .

[31]  P. L. Doussal,et al.  Creep and depinning in disordered media , 2000, cond-mat/0002299.

[32]  G. Rossetti,et al.  Phase transition energetics and thermodynamic properties of ferroelectric PbTiO_3 , 1998 .

[33]  M. Hooker Properties of PZT-Based Piezoelectric Ceramics Between-150 and 250°C , 1998 .

[34]  W. Schulze,et al.  Effect of the ac Field Level on the Aging of the Dielectric Response in Polycrystalline BaTiO3 , 1992 .

[35]  L. Ioffe,et al.  Dynamics of interfaces and dislocations in disordered media , 1987 .

[36]  G. Weinreich,et al.  Mechanism for the Sidewise Motion of 180° Domain Walls in Barium Titanate , 1960 .

[37]  W. J. Merz,et al.  Domain Formation and Domain Wall Motions in Ferroelectric BaTiO 3 Single Crystals , 1954 .

[38]  M. Suchomel Greater functionality of bismuth and lead based perovskites , 2005 .