A space-fractional Monodomain model for cardiac electrophysiology combining anisotropy and heterogeneity on realistic geometries

Abstract Classical models of electrophysiology do not typically account for the effects of high structural heterogeneity in the spatio-temporal description of excitation waves propagation. We consider a modification of the Monodomain model obtained by replacing the diffusive term of the classical formulation with a fractional power of the operator, defined in the spectral sense. The resulting nonlocal model describes different levels of tissue heterogeneity as the fractional exponent is varied. The numerical method for the solution of the fractional Monodomain relies on an integral representation of the nonlocal operator combined with a finite element discretisation in space, allowing to handle in a natural way bounded domains in more than one spatial dimension. Numerical tests in two spatial dimensions illustrate the features of the model. Activation times, action potential duration and its dispersion throughout the domain are studied as a function of the fractional parameter: the expected peculiar behaviour driven by tissue heterogeneities is recovered.

[1]  Martine Chevrollier,et al.  Lévy flights of photons in hot atomic vapours , 2009, 0904.2454.

[2]  Yves Coudière,et al.  A mathematical model of the Purkinje-muscle junctions. , 2011, Mathematical biosciences and engineering : MBE.

[3]  Rodrigo Weber dos Santos,et al.  Parallel multigrid preconditioner for the cardiac bidomain model , 2004, IEEE Transactions on Biomedical Engineering.

[4]  Alejandro F. Frangi,et al.  A coupled 3D-1D numerical monodomain solver for cardiac electrical activation in the myocardium with detailed Purkinje network , 2016, J. Comput. Phys..

[5]  Natalia A. Trayanova,et al.  Computational techniques for solving the bidomain equations in three dimensions , 2002, IEEE Transactions on Biomedical Engineering.

[6]  Ben Hanson,et al.  Interaction of Activation–Repolarization Coupling and Restitution Properties in Humans , 2009, Circulation. Arrhythmia and electrophysiology.

[7]  Spach,et al.  Effects of cardiac microstructure on propagating electrical waveforms , 2000, Circulation research.

[8]  Mark M. Meerschaert,et al.  Backward fractional advection dispersion model for contaminant source prediction , 2016 .

[9]  Vicente Grau,et al.  Fractional diffusion models of cardiac electrical propagation: role of structural heterogeneity in dispersion of repolarization , 2014, Journal of The Royal Society Interface.

[10]  M. Belić,et al.  Propagation Dynamics of a Light Beam in a Fractional Schrödinger Equation. , 2015, Physical review letters.

[11]  Dd. Streeter,et al.  Gross morphology and fiber geometry of the heart , 1979 .

[12]  Nicholas J. Higham,et al.  Computing AAlpha, log(A), and Related Matrix Functions by Contour Integrals , 2008, SIAM J. Numer. Anal..

[13]  A V Panfilov,et al.  A guide to modelling cardiac electrical activity in anatomically detailed ventricles. , 2008, Progress in biophysics and molecular biology.

[14]  Mark Potse,et al.  A Comparison of Monodomain and Bidomain Reaction-Diffusion Models for Action Potential Propagation in the Human Heart , 2006, IEEE Transactions on Biomedical Engineering.

[15]  Hervé Delingette,et al.  Patient-specific Electromechanical Models of the Heart for the Prediction of Pacing Acute Effects in Crt: a Preliminary Clinical Validation , 2022 .

[16]  Eranga Ukwatta,et al.  Image-based reconstruction of three-dimensional myocardial infarct geometry for patient-specific modeling of cardiac electrophysiology. , 2015, Medical physics.

[17]  P. Hunter,et al.  Laminar structure of the heart: ventricular myocyte arrangement and connective tissue architecture in the dog. , 1995, The American journal of physiology.

[18]  V. Simoncini,et al.  Efficient algebraic solution of reaction-diffusion systems for the cardiac excitation process , 2002 .

[19]  Simone Scacchi,et al.  A hybrid multilevel Schwarz method for the bidomain model , 2008 .

[20]  B. Taccardi,et al.  Simulating patterns of excitation, repolarization and action potential duration with cardiac Bidomain and Monodomain models. , 2005, Mathematical biosciences.

[21]  A Prakosa,et al.  Methodology for image-based reconstruction of ventricular geometry for patient-specific modeling of cardiac electrophysiology. , 2014, Progress in biophysics and molecular biology.

[22]  Andrey G. Cherstvy,et al.  Anomalous diffusion models and their properties , 2014 .

[23]  Andrey G. Cherstvy,et al.  Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking. , 2014, Physical chemistry chemical physics : PCCP.

[24]  M. Perego,et al.  OPTIMIZED SCHWARZ METHODS FOR THE BIDOMAIN SYSTEM IN ELECTROCARDIOLOGY , 2013 .

[25]  Jonathan P. Whiteley,et al.  An Efficient Numerical Technique for the Solution of the Monodomain and Bidomain Equations , 2006, IEEE Transactions on Biomedical Engineering.

[26]  Luca F. Pavarino,et al.  Multilevel Additive Schwarz Preconditioners for the Bidomain Reaction-Diffusion System , 2008, SIAM J. Sci. Comput..

[27]  Luca Gerardo-Giorda,et al.  A model-based block-triangular preconditioner for the Bidomain system in electrocardiology , 2009, J. Comput. Phys..

[28]  Frank B. Sachse,et al.  Computational Cardiology , 2004, Lecture Notes in Computer Science.

[29]  M. Shitikova,et al.  Application of Fractional Calculus for Dynamic Problems of Solid Mechanics: Novel Trends and Recent Results , 2010 .

[30]  P. C. Franzone,et al.  A PARALLEL SOLVER FOR REACTION-DIFFUSION SYSTEMS IN COMPUTATIONAL ELECTROCARDIOLOGY , 2004 .

[31]  Nicholas Hale,et al.  An Efficient Implicit FEM Scheme for Fractional-in-Space Reaction-Diffusion Equations , 2012, SIAM J. Sci. Comput..

[32]  G. W. Beeler,et al.  Reconstruction of the action potential of ventricular myocardial fibres , 1977, The Journal of physiology.

[33]  George E. Karniadakis,et al.  Computing Fractional Laplacians on Complex-Geometry Domains: Algorithms and Simulations , 2017, SIAM J. Sci. Comput..

[34]  Gernot Plank,et al.  Image-based models of cardiac structure with applications in arrhythmia and defibrillation studies. , 2009, Journal of electrocardiology.

[35]  Alfonso Bueno-Orovio,et al.  Anomalous Diffusion in Cardiac Tissue as an Index of Myocardial Microstructure , 2016, IEEE Transactions on Medical Imaging.

[36]  J. Rasmussen,et al.  Superdiffusion and viscoelastic vortex flows in a two-dimensional complex plasma. , 2006, Physical review letters.

[37]  Kevin Burrage,et al.  On the Order of the Fractional Laplacian in Determining the Spatio-Temporal Evolution of a Space-Fractional Model of Cardiac Electrophysiology , 2015, PloS one.

[38]  高等学校計算数学学報編輯委員会編 高等学校計算数学学報 = Numerical mathematics , 1979 .

[39]  Pablo Raúl Stinga,et al.  Fractional powers of second order partial differential operators: extension problem and regularity theory , 2010 .

[40]  G. Plank,et al.  The role of fine-scale anatomical structure in the dynamics of reentry in computational models of the rabbit ventricles , 2012, The Journal of physiology.

[41]  G Plank,et al.  Solvers for the cardiac bidomain equations. , 2008, Progress in biophysics and molecular biology.