Self-Sensing Measurement in Piezoelectric Cantilevered Actuators for Micromanipulation and Microassembly Contexts

This chapter aims to develop a self-sensing technique to measure the displacement and the force in piezoelectric microactuators dedicated to micromanipulation and microassembly contexts. In order to answer the requirements in these contexts, the developed self-sensing should perform a long duration measurement of constant signals (displacement and force) as well as a high precision. Furthermore, we propose to consider the dynamics in the displacement self-sensing measurement such that a positioning feedback is possible and therefore a high micro/nanopositioning accuracy is obtained. The experimental results validate the proposed technique and demonstrate its conveniency for micromanipulation and microassembly contexts.

[1]  Y. Yong,et al.  Simultaneous sensing and actuation with a piezoelectric tube scanner. , 2008, The Review of scientific instruments.

[2]  S. Li-ning,et al.  Hysteresis and creep compensation for piezoelectric actuator in open-loop operation , 2005 .

[3]  Aristides A. G. Requicha,et al.  Compensation of Scanner Creep and Hysteresis for AFM Nanomanipulation , 2008, IEEE Transactions on Automation Science and Engineering.

[4]  S O Reza Moheimani,et al.  Invited review article: accurate and fast nanopositioning with piezoelectric tube scanners: emerging trends and future challenges. , 2008, The Review of scientific instruments.

[5]  V. Altuzar,et al.  Atmospheric pollution profiles in Mexico City in two different seasons , 2003 .

[6]  W. W. Law,et al.  Vibration control of structures with self-sensing piezoelectric actuators incorporating adaptive mechanisms , 2003 .

[7]  Guoxiao Guo,et al.  Self-sensing actuation for nanopositioning and active-mode damping in dual-stage HDDs , 2006, IEEE/ASME Transactions on Mechatronics.

[8]  Yunmin Chen,et al.  Modeling of sensor function for piezoelectric bender elements , 2008 .

[9]  Mamoru Ito,et al.  Application of self-sensing actuator to control of a soft-handling gripper , 1998, Proceedings of the 1998 IEEE International Conference on Control Applications (Cat. No.98CH36104).

[10]  Philippe Lutz,et al.  Complete Open Loop Control of Hysteretic, Creeped, and Oscillating Piezoelectric Cantilevers , 2010, IEEE Transactions on Automation Science and Engineering.

[11]  Michael Goldfarb,et al.  Modeling Piezoelectric Stack Actuators for Control of Mlcromanlpulatlon , 2022 .

[12]  Philippe Lutz,et al.  Quasistatic displacement self-sensing method for cantilevered piezoelectric actuators. , 2009, The Review of scientific instruments.

[13]  Yuguo Cui Self-Sensing Compounding Control of Piezoceramic Micro-Motion Worktable Based on Integrator , 2006, 2006 6th World Congress on Intelligent Control and Automation.

[14]  M. Krasnosel’skiǐ,et al.  Systems with Hysteresis , 1989 .

[15]  Jan G. Smits,et al.  The constituent equations of piezoelectric bimorphs , 1991 .

[16]  Ephrahim Garcia,et al.  A Self-Sensing Piezoelectric Actuator for Collocated Control , 1992 .

[17]  Micky Rakotondrabe,et al.  Development and Force/Position Control of a New Hybrid Thermo-Piezoelectric MicroGripper Dedicated to Micromanipulation Tasks , 2011, IEEE Transactions on Automation Science and Engineering.

[18]  Jinhao Qiu,et al.  A new simple asymmetric hysteresis operator and its application to inverse control of piezoelectric actuators , 2008, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[19]  Jinhao Qiu,et al.  Self-sensing High Speed Controller for Piezoelectric Actuator , 2008 .

[20]  Robert J. Wood,et al.  Nonlinear Performance Limits for High Energy Density Piezoelectric Bending Actuators , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[21]  Tien-Fu Lu,et al.  Adaptive identification of hysteresis and creep in piezoelectric stack actuators , 2010 .

[22]  T. Low,et al.  Modeling of a three-layer piezoelectric bimorph beam with hysteresis , 1995 .

[23]  Ronald S. Fearing,et al.  Development of piezoelectric bending actuators with embedded piezoelectric sensors for micromechanical flapping mechanisms , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[24]  J.G. Smits,et al.  The constituent equations of piezoelectric heterogeneous bimorphs , 1991, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[25]  Micky Rakotondrabe,et al.  Bouc–Wen Modeling and Inverse Multiplicative Structure to Compensate Hysteresis Nonlinearity in Piezoelectric Actuators , 2011, IEEE Transactions on Automation Science and Engineering.

[26]  Reinder Banning,et al.  Modeling piezoelectric actuators , 2000 .

[27]  Hewon Jung,et al.  New open-loop actuating method of piezoelectric actuators for removing hysteresis and creep , 2000 .

[28]  K. Kuhnen,et al.  Inverse feedforward controller for complex hysteretic nonlinearities in smart-material systems , 2001 .

[29]  Jinhao Qiu,et al.  Self-sensing force control of a piezoelectric actuator , 2008, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[30]  Philippe Lutz,et al.  Dynamic displacement self-sensing and robust control of cantilever piezoelectric actuators dedicated for microassembly , 2010, 2010 IEEE/ASME International Conference on Advanced Intelligent Mechatronics.

[31]  A. Dubra,et al.  Preisach classical and nonlinear modeling of hysteresis in piezoceramic deformable mirrors. , 2005, Optics express.

[32]  S. Lang,et al.  Piezoelectric coefficients of multilayer Pb(Zr,Ti)O3 thin films , 2008 .

[33]  Philippe Lutz,et al.  Current integration force and displacement self-sensing method for cantilevered piezoelectric actuators. , 2009, The Review of scientific instruments.

[34]  Kok Kiong Tan,et al.  Self-Sensing Actuation With Adaptive Control in Applications With Switching Trajectory , 2008, IEEE/ASME Transactions on Mechatronics.

[35]  K. Kuhnen,et al.  COMPENSATION OF THE CREEP AND HYSTERESIS EFFECTS OF PIEZOELECTRIC ACTUATORS WITH INVERSE SYSTEMS , 2000 .

[36]  Philippe Lutz,et al.  Modelling and Robust Position/Force Control of a Piezoelectric Microgripper , 2007, 2007 IEEE International Conference on Automation Science and Engineering.