Experimental demonstration of a second-order memristor and its ability to biorealistically implement synaptic plasticity.

Memristors have been extensively studied for data storage and low-power computation applications. In this study, we show that memristors offer more than simple resistance change. Specifically, the dynamic evolutions of internal state variables allow an oxide-based memristor to exhibit Ca(2+)-like dynamics that natively encode timing information and regulate synaptic weights. Such a device can be modeled as a second-order memristor and allow the implementation of critical synaptic functions realistically using simple spike forms based solely on spike activity.

[1]  Wei Lu,et al.  Short-term Memory to Long-term Memory Transition in a Nanoscale Memristor , 2022 .

[2]  Shimeng Yu,et al.  An Electronic Synapse Device Based on Metal Oxide Resistive Switching Memory for Neuromorphic Computation , 2011, IEEE Transactions on Electron Devices.

[3]  J Joshua Yang,et al.  Memristive devices for computing. , 2013, Nature nanotechnology.

[4]  D. Stewart,et al.  The missing memristor found , 2008, Nature.

[5]  Y. Dan,et al.  Spike timing-dependent plasticity: a Hebbian learning rule. , 2008, Annual review of neuroscience.

[6]  Wei Lu,et al.  Oxide heterostructure resistive memory. , 2013, Nano letters.

[7]  S. Balatti,et al.  Resistive Switching by Voltage-Driven Ion Migration in Bipolar RRAM—Part II: Modeling , 2012, IEEE Transactions on Electron Devices.

[8]  Seungmin Lee,et al.  Heat transport in thin dielectric films , 1997 .

[9]  G. Bi,et al.  Synaptic Modifications in Cultured Hippocampal Neurons: Dependence on Spike Timing, Synaptic Strength, and Postsynaptic Cell Type , 1998, The Journal of Neuroscience.

[10]  Massimiliano Di Ventra,et al.  Neuromorphic, Digital, and Quantum Computation With Memory Circuit Elements , 2010, Proceedings of the IEEE.

[11]  Masakazu Aono,et al.  On-demand nanodevice with electrical and neuromorphic multifunction realized by local ion migration. , 2012, ACS nano.

[12]  Matteo Chiesa,et al.  Characterization of thin metal films via frequency-domain thermoreflectance , 2010 .

[13]  Bernabé Linares-Barranco,et al.  On Spike-Timing-Dependent-Plasticity, Memristive Devices, and Building a Self-Learning Visual Cortex , 2011, Front. Neurosci..

[14]  Fabien Alibart,et al.  A Memristive Nanoparticle/Organic Hybrid Synapstor for Neuroinspired Computing , 2011, ArXiv.

[15]  Wei Yang Lu,et al.  Nanoscale memristor device as synapse in neuromorphic systems. , 2010, Nano letters.

[16]  L. Chua Memristor-The missing circuit element , 1971 .

[17]  Patrick D. Roberts,et al.  Spike timing dependent synaptic plasticity in biological systems , 2002, Biological Cybernetics.

[18]  M B Jackson,et al.  Action potential broadening and frequency-dependent facilitation of calcium signals in pituitary nerve terminals. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[19]  M. Bear,et al.  LTP and LTD An Embarrassment of Riches , 2004, Neuron.

[20]  T. Hasegawa,et al.  Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. , 2011, Nature materials.

[21]  A. Thomas,et al.  The Memristive Magnetic Tunnel Junction as a Nanoscopic Synapse‐Neuron System , 2012, Advanced materials.

[22]  Kinam Kim,et al.  A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O(5-x)/TaO(2-x) bilayer structures. , 2011, Nature materials.

[23]  Mu-ming Poo,et al.  GABAB receptor activation mediates frequency-dependent plasticity of developing GABAergic synapses , 2008, Nature Neuroscience.

[24]  L.O. Chua,et al.  Memristive devices and systems , 1976, Proceedings of the IEEE.

[25]  Leon O. Chua,et al.  Circuit Elements With Memory: Memristors, Memcapacitors, and Meminductors , 2009, Proceedings of the IEEE.

[26]  D. Ielmini,et al.  Modeling the Universal Set/Reset Characteristics of Bipolar RRAM by Field- and Temperature-Driven Filament Growth , 2011, IEEE Transactions on Electron Devices.

[27]  Y. Liu,et al.  Synaptic Learning and Memory Functions Achieved Using Oxygen Ion Migration/Diffusion in an Amorphous InGaZnO Memristor , 2012 .

[28]  L. Abbott,et al.  Synaptic plasticity: taming the beast , 2000, Nature Neuroscience.

[29]  Y. Dan,et al.  Contribution of individual spikes in burst-induced long-term synaptic modification. , 2006, Journal of neurophysiology.

[30]  L. Cooper,et al.  A unified model of NMDA receptor-dependent bidirectional synaptic plasticity , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[31]  Siddharth Gaba,et al.  Ultralow Sub-1-nA Operating Current Resistive Memory With Intrinsic Non-Linear Characteristics , 2014, IEEE Electron Device Letters.

[32]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[33]  N. Brunel,et al.  Calcium-based plasticity model explains sensitivity of synaptic changes to spike pattern, rate, and dendritic location , 2012, Proceedings of the National Academy of Sciences.

[34]  R. Zucker,et al.  Selective induction of LTP and LTD by postsynaptic [Ca2+]i elevation. , 1999, Journal of neurophysiology.

[35]  Shinhyun Choi,et al.  Comprehensive physical model of dynamic resistive switching in an oxide memristor. , 2014, ACS nano.

[36]  M. Bear,et al.  A biophysically-based neuromorphic model of spike rate- and timing-dependent plasticity , 2011, Proceedings of the National Academy of Sciences.