Texture classification using texture spectrum

Abstract Pursuing our previous study where the Texture Spectrum method has been proposed for texture analysis, the purpose of this paper is to demonstrate the usefulness of the Texture Spectrum for texture classification. Promising results are obtained when applying the Texture Spectrum to classify four of Brodatz's natural images.

[1]  R.M. Haralick,et al.  Statistical and structural approaches to texture , 1979, Proceedings of the IEEE.

[2]  Makoto Nagao,et al.  Structural analysis of natural textures by Fourier transformation , 1983, Comput. Vis. Graph. Image Process..

[3]  Anil K. Jain,et al.  A spatial filtering approach to texture analysis , 1985, Pattern Recognit. Lett..

[4]  Dong-Chen He,et al.  Texture discrimination based on an optimal utilization of texture features , 1988, Pattern Recognit..

[5]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..

[6]  Dong-Chen He,et al.  Texture feature extraction , 1987, Pattern Recognit. Lett..

[7]  Robert M. Haralick,et al.  Digital Step Edges from Zero Crossing of Second Directional Derivatives , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  Azriel Rosenfeld,et al.  Human and Machine Vision , 1983 .

[9]  Phil Brodatz,et al.  Textures: A Photographic Album for Artists and Designers , 1966 .

[10]  Jean Guibert,et al.  M.A.M.A. Project: A New Measuring Machine in Paris , 1984 .

[11]  D Marr,et al.  Theory of edge detection , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[12]  M.,et al.  Statistical and Structural Approaches to Texture , 2022 .

[13]  Jake K. Aggarwal,et al.  Multiple resolution imagery and texture analysis , 1987, Pattern Recognit..