New challenges in spatial and spatiotemporal functional statistics for high-dimensional data

Abstract Spatial Functional Statistics has emerged as a powerful tool in the spatial and spatiotemporal analysis of data arising, for example, from Agriculture, Geology, Soils, Hydrology, Environment, Ecology, Mining, Oceanography, Air Quality, Remote Sensing, Spatial Econometrics, Epidemiology, just to mention a few areas of application. However, big black holes still exist in the development and implementation of new methodologies and approaches in this context. This paper provides an overview of the main references in the field of Spatial Functional Statistics, as well as the description of some key open research problems in this context.

[1]  N. Zhang,et al.  Bayesian Variable Selection in Structured High-Dimensional Covariate Spaces With Applications in Genomics , 2010 .

[2]  Sophie Dabo-Niang,et al.  Spatial mode estimation for functional random fields with application to bioturbation problem , 2010 .

[3]  T. Gneiting,et al.  Analogies and correspondences between variograms and covariance functions , 2001, Advances in Applied Probability.

[4]  Peter Hall,et al.  A Functional Data—Analytic Approach to Signal Discrimination , 2001, Technometrics.

[5]  N. Cressie,et al.  Fixed rank kriging for very large spatial data sets , 2008 .

[6]  Jorge Mateu,et al.  Statistics for spatial functional data: some recent contributions , 2009 .

[7]  Colin O. Wu,et al.  Nonparametric Mixed Effects Models for Unequally Sampled Noisy Curves , 2001, Biometrics.

[8]  N. Cressie,et al.  A dimension-reduced approach to space-time Kalman filtering , 1999 .

[9]  James O. Ramsay,et al.  Functional Data Analysis , 2005 .

[10]  Rob J. Hyndman,et al.  Robust forecasting of mortality and fertility rates: A functional data approach , 2007, Comput. Stat. Data Anal..

[11]  L. Tran,et al.  Kernel density estimation for random fields (density estimation for random fields) , 1997 .

[12]  S. Dabo‐Niang,et al.  Kernel regression estimation for continuous spatial processes , 2007 .

[13]  María Dolores Ruiz-Medina,et al.  Kalman filtering from POP-based diagonalization of ARH(1) , 2007, Comput. Stat. Data Anal..

[14]  N. Cressie,et al.  Classes of nonseparable, spatio-temporal stationary covariance functions , 1999 .

[15]  Claude Manté,et al.  Cokriging for spatial functional data , 2010, J. Multivar. Anal..

[16]  Sophie Dabo-Niang,et al.  Kernel regression estimation in a Banach space , 2009 .

[17]  Ana-Maria Staicu,et al.  Fast methods for spatially correlated multilevel functional data. , 2010, Biostatistics.

[18]  Pascal Monestiez,et al.  A Cokriging Method for Spatial Functional Data with Applications in Oceanology , 2008 .

[19]  Do Le Minh,et al.  A New Fixed Point Iteration to Find Percentage Points for Distributions on the Positive Axis , 2010 .

[20]  M. D. Ruiz-Medina,et al.  Multi-spectral decomposition of functional autoregressive models , 2009 .

[21]  M. Stein Space–Time Covariance Functions , 2005 .

[22]  L. Baxter Random Fields on a Network: Modeling, Statistics, and Applications , 1996 .

[23]  Chunsheng Ma,et al.  Spatio-temporal variograms and covariance models , 2005, Advances in Applied Probability.

[24]  Noel A Cressie,et al.  Statistics for Spatio-Temporal Data , 2011 .

[25]  Jin-Ting Zhang,et al.  Statistical inferences for functional data , 2007, 0708.2207.

[26]  Irene Epifanio,et al.  Functional Data Analysis in Shape Analysis , 2011 .

[27]  María Dolores Ruiz-Medina,et al.  Wavelet-RKHS-based functional statistical classification , 2012, Adv. Data Anal. Classif..

[28]  George Christakos,et al.  Modern Spatiotemporal Geostatistics , 2000 .

[29]  D. Dunson,et al.  Bayesian Selection and Clustering of Polymorphisms in Functionally Related Genes , 2008 .

[30]  Rosanna Verde,et al.  Clustering Spatio-Functional Data: A Model Based Approach , 2010 .

[31]  D. Bosq Linear Processes in Function Spaces: Theory And Applications , 2000 .

[32]  Jorge Mateu,et al.  Continuous Time-Varying Kriging for Spatial Prediction of Functional Data: An Environmental Application , 2010 .

[33]  María Dolores Ruiz-Medina,et al.  Spatial autoregressive and moving average Hilbertian processes , 2011, J. Multivar. Anal..

[34]  T. Gneiting Nonseparable, Stationary Covariance Functions for Space–Time Data , 2002 .

[35]  Emilio Porcu,et al.  Characterization theorems for the Gneiting class of space-time covariances , 2011 .

[36]  William G. Cochran,et al.  Contributions to statistics , 1983 .

[37]  Annie Qu,et al.  Testing the significance of cell-cycle patterns in time-course microarray data using nonparametric quadratic inference functions , 2008, Comput. Stat. Data Anal..

[38]  Martin Schlather,et al.  Some covariance models based on normal scale mixtures , 2011 .

[39]  H. Müller,et al.  Shrinkage Estimation for Functional Principal Component Scores with Application to the Population Kinetics of Plasma Folate , 2003, Biometrics.

[40]  Ming-Jun Lai,et al.  Bivariate splines for spatial functional regression models , 2010 .

[41]  M. D. Ruiz-Medina,et al.  Spatiotemporal filtering from fractal spatial functional data sequence , 2010 .

[42]  Sophie Dabo-Niang,et al.  MEAN SQUARE PROPERTIES OF A CLASS OF KERNEL DENSITY ESTIMATES FOR SPATIAL FUNCTIONAL RANDOM VARIABLES , 2008 .

[43]  Dionissios T. Hristopulos,et al.  Methods for generating non-separable spatiotemporal covariance models with potential environmental applications , 2004 .

[44]  Margarita M. Rincón Hidalgo,et al.  Local wavelet‐vaguelette‐based functional classification of gene expression data , 2012, Biometrical journal. Biometrische Zeitschrift.

[45]  M. Ruiz-Medina Spatial functional prediction from spatial autoregressive Hilbertian processes , 2012 .

[46]  Hans-Georg Müller,et al.  Classification using functional data analysis for temporal gene expression data , 2006, Bioinform..

[47]  M. D. Ruiz-Medina,et al.  Functional maximum-likelihood estimation of ARH(p) models , 2010 .

[48]  María Dolores Ruiz-Medina,et al.  Integration of spatial functional interaction in the extrapolation of ocean surface temperature anomalies due to global warming , 2013, Int. J. Appl. Earth Obs. Geoinformation.

[49]  Denis Bosq Tensorial products of functional ARMA processes , 2010, J. Multivar. Anal..

[50]  David Nualart Rodón,et al.  A Markov property for two parameter Gaussian processes. , 1979 .

[51]  Arpad Kelemen,et al.  Statistical advances and challenges for analyzing correlated high dimensional SNP data in genomic study for complex diseases , 2008, 0803.4065.

[52]  Seoung Bum Kim,et al.  Spatial prediction of ozone concentration profiles , 2009, Comput. Stat. Data Anal..

[53]  M. Ruiz-Medina,et al.  Spatial autoregressive functional plug-in prediction of ocean surface temperature , 2012, Stochastic Environmental Research and Risk Assessment.

[54]  C. Francq,et al.  Kernel regression estimation for random fields , 2007 .

[55]  M. Ruiz-Medina,et al.  Minimum Contrast Parameter Estimation for Fractal Random Fields Based on the Wavelet Periodogram , 2011 .

[56]  B. Mallick,et al.  Bayesian Hierarchical Spatially Correlated Functional Data Analysis with Application to Colon Carcinogenesis , 2008, Biometrics.

[57]  L. Tran Kernel density estimation on random fields , 1990 .

[58]  David B. Allison,et al.  A mixture model approach for the analysis of microarray gene expression data , 2002 .

[59]  M. Hallin,et al.  Kernel density estimation on random fields: the L1 theory , 1996 .

[60]  Jeng-Min Chiou,et al.  Inferring gene expression dynamics via functional regression analysis , 2007, BMC Bioinformatics.