Agile Satellite Scheduling via Permutation Search with Constraint Propagation

Earth Observation Satellite (EOS) scheduling is an important oversubscribed constraint optimization problem. Permutation-based scheduling methods have recently been shown to be effective on these problems. However, the new agile EOS satellites present additional scheduling complexity because they allow image acquisition over a window of possible observation times. Constraint propagation algorithms have been successfully applied in traditional local search methods for these problems. In this paper, we describe a synthesis of permutation-based search and constraint propagation for agile EOS scheduling. Our approach incorporates the advantages of both techniques. We obtain the large neighbourhood behaviour of permutation search for oversubscribed resource scheduling problems. As well, we exploit the power of constraint propagation to retain as much flexibility as possible while building the schedule. We investigate different local optimization algorithms (including hill-climbing, simulated annealing and squeaky wheel optimization) coupled with constraint propagation over image acquisition time windows. We compare our method to recent permutation-based methods for non-agile EOS scheduling which rely upon a greedy scheduler for assigning image acquisition times. Experiments are performed on synthetic EOS data sets using both uniform random image targets and actual urban image target sets. We measure both schedule quality and solution degradation as new image requests are added dynamically to the problem. Our results suggest that permutation-based search coupled with constraint propagation works very well for agile EOS scheduling.

[1]  Mauro Dell'Amico,et al.  Applying tabu search to the job-shop scheduling problem , 1993, Ann. Oper. Res..

[2]  J. Carlier,et al.  An algorithm for solving the job-shop problem , 1989 .

[3]  Thomas Schiex,et al.  Valued Constraint Satisfaction Problems: Hard and Easy Problems , 1995, IJCAI.

[4]  Joao Marques-Silva,et al.  Using Randomization and Learning to Solve Hard Real-World Instances of Satisfiability , 2000, CP.

[5]  L. Darrell Whitley,et al.  Scheduling Problems and Traveling Salesmen: The Genetic Edge Recombination Operator , 1989, International Conference on Genetic Algorithms.

[6]  Roberto J. Bayardo,et al.  Using CSP Look-Back Techniques to Solve Real-World SAT Instances , 1997, AAAI/IAAI.

[7]  Stephen F. Smith,et al.  Profile-Based Algorithms to Solve Multiple Capacitated Metric Scheduling Problems , 1998, AIPS.

[8]  Masahiro Fujita,et al.  Symbolic model checking using SAT procedures instead of BDDs , 1999, DAC '99.

[9]  Bart Selman,et al.  Systematic Versus Stochastic Constraint Satisfaction , 1995, IJCAI.

[10]  Stephen F. Smith,et al.  Applying constraint satisfaction techniques to job shop scheduling , 1997, Ann. Oper. Res..

[11]  Hector J. Levesque,et al.  A New Method for Solving Hard Satisfiability Problems , 1992, AAAI.

[12]  J. Carlier The one-machine sequencing problem , 1982 .

[13]  Matthew L. Ginsberg,et al.  Dynamic Backtracking , 1993, J. Artif. Intell. Res..

[14]  Gilbert Syswerda,et al.  The Application of Genetic Algorithms to Resource Scheduling , 1991, International Conference on Genetic Algorithms.

[15]  Makoto Yokoo,et al.  Why Adding More Constraints Makes a Problem Easier for Hill-climbing Algorithms: Analyzing Landscapes of CSPs , 1997, CP.

[16]  Éric D. Taillard,et al.  Benchmarks for basic scheduling problems , 1993 .

[17]  Patrick Prosser,et al.  HYBRID ALGORITHMS FOR THE CONSTRAINT SATISFACTION PROBLEM , 1993, Comput. Intell..

[18]  N. Bataille,et al.  DEALING WITH UNCERTAINTY WHEN MANAGING AN EARTH OBSERVATION SATELLITE , 1999 .

[19]  Bart Selman,et al.  Noise Strategies for Improving Local Search , 1994, AAAI.

[20]  Mark S. Fox,et al.  Intelligent Scheduling , 1998 .

[21]  William J. Cook,et al.  A Computational Study of the Job-Shop Scheduling Problem , 1991, INFORMS Journal on Computing.

[22]  E. Nowicki,et al.  A Fast Taboo Search Algorithm for the Job Shop Problem , 1996 .

[23]  Michael Molloy,et al.  A sharp threshold in proof complexity , 2001, STOC '01.

[24]  Bart Selman,et al.  Pushing the Envelope: Planning, Propositional Logic and Stochastic Search , 1996, AAAI/IAAI, Vol. 2.

[25]  Djamal Habet,et al.  Solving the selecting and scheduling satellite photographs problem with a consistent neighborhood heuristic , 2004, 16th IEEE International Conference on Tools with Artificial Intelligence.

[26]  Takashi Horiyama,et al.  Density condensation of Boolean formulas , 2003, Discret. Appl. Math..

[27]  J. Freeman Improvements to propositional satisfiability search algorithms , 1995 .

[28]  Eli Ben-Sasson,et al.  Near Optimal Separation Of Tree-Like And General Resolution , 2004, Comb..

[29]  David Joslin,et al.  "Squeaky Wheel" Optimization , 1998, AAAI/IAAI.

[30]  Randall Davis,et al.  Diagnostic Reasoning Based on Structure and Behavior , 1984, Artif. Intell..

[31]  Michael J. Maher,et al.  Constraint Logic Programming: A Survey , 1994, J. Log. Program..

[32]  Michael D. Ernst,et al.  Automatic SAT-Compilation of Planning Problems , 1997, IJCAI.

[33]  David A. McAllester,et al.  GSAT and Dynamic Backtracking , 1994, KR.

[34]  Jan Karel Lenstra,et al.  Job Shop Scheduling by Local Search , 1996, INFORMS J. Comput..

[35]  E.L. Lawler,et al.  Optimization and Approximation in Deterministic Sequencing and Scheduling: a Survey , 1977 .

[36]  Robert A. Morris,et al.  Optimizing Observation Scheduling Objectives , 1997 .

[37]  Alan M. Frisch,et al.  Solving Non-Boolean Satisfiability Problems with Stochastic Local Search: A Comparison of Encodings , 2001, Journal of Automated Reasoning.

[38]  Eli Ben-Sasson,et al.  Short proofs are narrow—resolution made simple , 2001, JACM.

[39]  P. Langley Systematic and nonsystematic search strategies , 1992 .

[40]  C. Le Pape,et al.  Three mechanisms for managing resource constraints in a library for constraint-based scheduling , 1995 .

[41]  Hantao Zhang,et al.  SATO: An Efficient Propositional Prover , 1997, CADE.

[42]  Fred Glover,et al.  Tabu Search - Part II , 1989, INFORMS J. Comput..

[43]  Makoto Yokoo,et al.  Weak-Commitment Search for Solving Constraint Satisfaction Problems , 1994, AAAI.

[44]  Michael P. Wellman,et al.  Planning and Control , 1991 .

[45]  Chu Min Li,et al.  Heuristics Based on Unit Propagation for Satisfiability Problems , 1997, IJCAI.

[46]  Nicholas G. Hall,et al.  Maximizing the value of a space mission , 1994 .

[47]  S. Prestwich,et al.  A SAT Approach to Query Optimization in Mediator Systems , 2005 .

[48]  Egon Balas,et al.  Guided Local Search with Shifting Bottleneck for Job Shop Scheduling , 1998 .

[49]  Pascal Van Hentenryck,et al.  Strategic directions in constraint programming , 1996, CSUR.

[50]  Eugene C. Freuder,et al.  The Complexity of Some Polynomial Network Consistency Algorithms for Constraint Satisfaction Problems , 1985, Artif. Intell..

[51]  Stephen F. Smith,et al.  Iterative Flattening: A Scalable Method for Solving Multi-Capacity Scheduling Problems , 2000, AAAI/IAAI.

[52]  Rina Dechter,et al.  Enhancement Schemes for Constraint Processing: Backjumping, Learning, and Cutset Decomposition , 1990, Artif. Intell..

[53]  Bart Selman,et al.  Domain-Independent Extensions to GSAT : Solving Large StructuredSatis ability , 1993 .

[54]  William J. Wolfe,et al.  Three Scheduling Algorithms Applied to the Earth Observing Systems Domain , 2000 .

[55]  S. A. Harrison,et al.  Task Scheduling for Satellite Based Imagery , 1999 .

[56]  Kazuhiko Kawamura,et al.  Managing genetic search in job shop scheduling , 1993, IEEE Expert.

[57]  Steven David Prestwich Negative Effects of Modeling Techniques on Search Performance , 2003, Ann. Oper. Res..

[58]  W. D. Harvey,et al.  Nonsystematic backtracking search , 1995 .

[59]  Bart Selman,et al.  Evidence for Invariants in Local Search , 1997, AAAI/IAAI.

[60]  Robert K. Brayton,et al.  Combinational test generation using satisfiability , 1996, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[61]  Eugene C. Freuder,et al.  Contradicting Conventional Wisdom in Constraint Satisfaction , 1994, ECAI.

[62]  Al Globus,et al.  A Comparison of Techniques for Scheduling Earth Observing Satellites , 2004, AAAI.

[63]  Hantao Zhang,et al.  Combining Local Search and Backtracking Techniques for Constraint Satisfaction , 1996, AAAI/IAAI, Vol. 1.

[64]  Maria Luisa Bonet,et al.  A study of proof search algorithms for resolution and polynomial calculus , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[65]  Steven Minton,et al.  Solving Large-Scale Constraint-Satisfaction and Scheduling Problems Using a Heuristic Repair Method , 1990, AAAI.

[66]  J. K. Lenstra,et al.  Local Search in Combinatorial Optimisation. , 1997 .

[67]  Bart Selman,et al.  Boosting Combinatorial Search Through Randomization , 1998, AAAI/IAAI.

[68]  Donald W. Loveland,et al.  A machine program for theorem-proving , 2011, CACM.

[69]  Ian P. Gent Arc Consistency in SAT , 2002, ECAI.

[70]  Al Globus,et al.  Scheduling Earth Observing Satellites with Evolutionary Algorithms , 2003 .

[71]  Simon Kasif,et al.  On the Parallel Complexity of Discrete Relaxation in Constraint Satisfaction Networks , 1990, Artif. Intell..

[72]  Gérard Verfaillie,et al.  Selecting and Scheduling Observations for Agile Satellites: Some Lessons from the Constraint Reasoning Community Point of View , 2001, CP.

[73]  Gérard Verfaillie,et al.  Exploiting a Common Property Resource under a Fairness Constraint: a Case Study , 1999, IJCAI.

[74]  Balakrishnan Krishnamurthy Short proofs for tricky formulas , 2004, Acta Informatica.

[75]  Claude Le Pape,et al.  Implementation of resource constraints in ILOG SCHEDULE: a library for the development of constraint-based scheduling systems , 1994 .

[76]  Jin-Kao Hao,et al.  A “Logic-Constrained” Knapsack Formulation and a Tabu Algorithm for the Daily Photograph Scheduling of an Earth Observation Satellite , 2001, Comput. Optim. Appl..

[77]  Jan Karel Lenstra,et al.  Job Shop Scheduling by Simulated Annealing , 1992, Oper. Res..

[78]  Jan Karel Lenstra,et al.  Sequencing by enumerative methods , 1977 .

[79]  Gérard Verfaillie,et al.  Selecting and scheduling observations of agile satellites , 2002 .

[80]  Eugene Goldberg,et al.  BerkMin: A Fast and Robust Sat-Solver , 2002 .

[81]  Vincenzo Piuri,et al.  An optimization approach to the planning of Earth observing satellites , 2004 .

[82]  Inês Lynce,et al.  An Overview of Backtrack Search Satisfiability Algorithms , 2003, Annals of Mathematics and Artificial Intelligence.

[83]  Randal E. Bryant,et al.  Effective use of Boolean satisfiability procedures in the formal verification of superscalar and VLIW microprocessors , 2001, Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232).

[84]  Zhe Wu,et al.  An Efficient Global-Search Strategy in Discrete Lagrangian Methods for Solving Hard Satisfiability Problems , 2000, AAAI/IAAI.

[85]  Thomas Schiex,et al.  Solution Reuse in Dynamic Constraint Satisfaction Problems , 1994, AAAI.

[86]  Norman Sadeh,et al.  MICRO-OPPORTUNISTIC SCHEDULING THE MICRO-BOSS FACTORY SCHEDULER , 1994 .

[87]  Steven Minton,et al.  Minimizing Conflicts: A Heuristic Repair Method for Constraint Satisfaction and Scheduling Problems , 1992, Artif. Intell..

[88]  Giovanni Righini,et al.  Heuristic solution of a large-scale planning and scheduling problem for a constellation of earth observing satellites , 2004 .

[89]  Toby Walsh,et al.  Local Search and the Number of Solutions , 1996, CP.

[90]  Brian C. Williams,et al.  Diagnosing Multiple Faults , 1987, Artif. Intell..

[91]  Stephen F. Smith,et al.  Stochastic Procedures for Generating Feasible Schedules , 1997, AAAI/IAAI.

[92]  Holger H. Hoos,et al.  Stochastic local search - methods, models, applications , 1998, DISKI.

[93]  Bart Selman,et al.  Randomization in Backtrack Search: Exploiting Heavy-Tailed Profiles for Solving Hard Scheduling Problems , 1998, AIPS.

[94]  Upendra Dave,et al.  Heuristic Scheduling Systems , 1993 .

[95]  Michael Alekhnovich,et al.  An exponential separation between regular and general resolution , 2002, STOC '02.

[96]  E. Nowicki,et al.  A block approach for single-machine scheduling with release dates and due dates , 1986 .

[97]  Dominik Stoffel,et al.  Reasoning in Boolean Networks - Logic Synthesis and Verification Using Testing Techniques , 1997, Frontiers in electronic testing.

[98]  Andrew B. Baker,et al.  The Hazards of Fancy Backtracking , 1994, AAAI.

[99]  Bart Selman,et al.  Local search strategies for satisfiability testing , 1993, Cliques, Coloring, and Satisfiability.

[100]  Steven David Prestwich,et al.  A SAT-Based Approach to Multiple Sequence Alignment , 2003, CP.

[101]  Egon Balas,et al.  The Shifting Bottleneck Procedure for Job Shop Scheduling , 1988 .

[102]  Michael R. Genesereth,et al.  The Use of Design Descriptions in Automated Diagnosis , 1984, Artif. Intell..

[103]  Paul Shaw,et al.  Using Constraint Programming and Local Search Methods to Solve Vehicle Routing Problems , 1998, CP.

[104]  Steven David Prestwich,et al.  Coloration Neighbourhood Search With Forward Checking , 2002, Annals of Mathematics and Artificial Intelligence.

[105]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[106]  Narendra Jussien,et al.  Local search with constraint propagation and conflict-based heuristics , 2000, Artif. Intell..

[107]  Gerald J. Sussman,et al.  Forward Reasoning and Dependency-Directed Backtracking in a System for Computer-Aided Circuit Analysis , 1976, Artif. Intell..

[108]  Michel Gendreau,et al.  A View of Local Search in Constraint Programming , 1996, CP.

[109]  Thomas Schiex,et al.  Russian Doll Search for Solving Constraint Optimization Problems , 1996, AAAI/IAAI, Vol. 1.

[110]  Vangelis Th. Paschos,et al.  A new single model and derived algorithms for the satellite shot planning problem using graph theory concepts , 1997, Ann. Oper. Res..

[111]  Djamal. Habet,et al.  Saturated and Consistent Neighborhood for Selecting and Scheduling Photographs of Agile Earth Observing Satellite , 2003 .

[112]  Daniel Brélaz,et al.  New methods to color the vertices of a graph , 1979, CACM.

[113]  G. Rand Sequencing and Scheduling: An Introduction to the Mathematics of the Job-Shop , 1982 .

[114]  Chu Min Li,et al.  Integrating Equivalency Reasoning into Davis-Putnam Procedure , 2000, AAAI/IAAI.

[115]  Joao Marques-Silva,et al.  GRASP: A Search Algorithm for Propositional Satisfiability , 1999, IEEE Trans. Computers.

[116]  Philippe Baptiste,et al.  Constraint - based scheduling : applying constraint programming to scheduling problems , 2001 .

[117]  L. Darrell Whitley,et al.  Leap Before You Look: An Effective Strategy in an Oversubscribed Scheduling Problem , 2004, AAAI.