Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides

[1]  Kenji Watanabe,et al.  Picosecond photoresponse in van der Waals heterostructures. , 2015, Nature nanotechnology.

[2]  Steven G. Louie,et al.  Erratum: Optical Spectrum of MoS 2 : Many-Body Effects and Diversity of Exciton States [Phys. Rev. Lett. 111, 216805 (2013)] , 2015 .

[3]  E. Pop,et al.  Bright visible light emission from graphene. , 2015, Nature nanotechnology.

[4]  Zetian Mi,et al.  Optically Pumped Two-Dimensional MoS2 Lasers Operating at Room-Temperature. , 2015, Nano letters.

[5]  T. Heinz,et al.  Population inversion and giant bandgap renormalization in atomically thin WS2 layers , 2015, Nature Photonics.

[6]  Ryan Beams,et al.  Voltage-controlled quantum light from an atomically thin semiconductor. , 2015, Nature nanotechnology.

[7]  Lei Wang,et al.  Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. , 2015, Nature nanotechnology.

[8]  M. S. Skolnick,et al.  Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities , 2015, Nature Communications.

[9]  Timothy C. Berkelbach,et al.  Observation of biexcitons in monolayer WSe2 , 2015, Nature Physics.

[10]  Aaron M. Jones,et al.  Electrical control of second-harmonic generation in a WSe2 monolayer transistor. , 2015, Nature nanotechnology.

[11]  Yuan Wang,et al.  Monolayer excitonic laser , 2015, Nature Photonics.

[12]  Arka Majumdar,et al.  Monolayer semiconductor nanocavity lasers with ultralow thresholds , 2015, Nature.

[13]  G. Wang,et al.  Giant enhancement of the optical second-harmonic emission of WSe(2) monolayers by laser excitation at exciton resonances. , 2015, Physical review letters.

[14]  M. Eginligil,et al.  Observation of excitonic fine structure in a 2D transition-metal dichalcogenide semiconductor. , 2015, ACS nano.

[15]  A Gholinia,et al.  Light-emitting diodes by band-structure engineering in van der Waals heterostructures. , 2014, Nature materials.

[16]  L. Levitov,et al.  Topological Valley Currents in Gapped Dirac Materials. , 2014, Physical review letters.

[17]  P. Mallet,et al.  Single photon emitters in exfoliated WSe2 structures. , 2015, Nature nanotechnology.

[18]  Jian-Wei Pan,et al.  Single quantum emitters in monolayer semiconductors. , 2014, Nature nanotechnology.

[19]  Aaron M. Jones,et al.  Highly anisotropic and robust excitons in monolayer black phosphorus. , 2014, Nature nanotechnology.

[20]  A. Kis,et al.  Optically active quantum dots in monolayer WSe2. , 2014, Nature nanotechnology.

[21]  Aaron M. Jones,et al.  Magnetic control of valley pseudospin in monolayer WSe2 , 2014, Nature Physics.

[22]  Andras Kis,et al.  Valley Zeeman effect in elementary optical excitations of monolayer WSe2 , 2014, Nature Physics.

[23]  D. Ralph,et al.  Breaking of valley degeneracy by magnetic field in monolayer MoSe2. , 2014, Physical review letters.

[24]  Aaron M. Jones,et al.  Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures , 2014, Nature Communications.

[25]  Yu Huang,et al.  Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. , 2014, Nature nanotechnology.

[26]  F. Xia,et al.  Two-dimensional material nanophotonics , 2014, Nature Photonics.

[27]  P. Avouris,et al.  Photodetectors based on graphene, other two-dimensional materials and hybrid systems. , 2014, Nature nanotechnology.

[28]  A. M. van der Zande,et al.  Valley splitting and polarization by the Zeeman effect in monolayer MoSe2. , 2014, Physical review letters.

[29]  A. V. Kretinin,et al.  Detecting topological currents in graphene superlattices , 2014, Science.

[30]  Jonghwan Kim,et al.  Ultrafast charge transfer in atomically thin MoS₂/WS₂ heterostructures. , 2014, Nature nanotechnology.

[31]  T. Mueller,et al.  Mechanisms of photoconductivity in atomically thin MoS2. , 2014, Nano letters.

[32]  Fengnian Xia,et al.  Strong light–matter coupling in two-dimensional atomic crystals , 2014, Nature Photonics.

[33]  J. Shan,et al.  Tightly bound excitons in monolayer WSe(2). , 2014, Physical review letters.

[34]  Y. J. Zhang,et al.  Electrically Switchable Chiral Light-Emitting Transistor , 2014, Science.

[35]  Wang Yao,et al.  Spin and pseudospins in layered transition metal dichalcogenides , 2014, Nature Physics.

[36]  S. Louie,et al.  Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. , 2014, Nature materials.

[37]  K. Novoselov,et al.  High-temperature superfluidity with indirect excitons in van der Waals heterostructures , 2014, Nature Communications.

[38]  S. Louie,et al.  Probing excitonic dark states in single-layer tungsten disulphide , 2014, Nature.

[39]  P. L. McEuen,et al.  The valley Hall effect in MoS2 transistors , 2014, Science.

[40]  Timothy C. Berkelbach,et al.  Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS(2). , 2014, Physical review letters.

[41]  X. Duan,et al.  Electroluminescence and Photocurrent Generation from Atomically Sharp WSe2/MoS2 Heterojunction p–n Diodes , 2014, Nano letters.

[42]  A. M. van der Zande,et al.  Atomically thin p-n junctions with van der Waals heterointerfaces. , 2014, Nature nanotechnology.

[43]  F. Libisch,et al.  Photovoltaic Effect in an Electrically Tunable van der Waals Heterojunction , 2014, Nano letters.

[44]  Hongtao Yuan,et al.  Generation and electric control of spin-valley-coupled circular photogalvanic current in WSe2. , 2014, Nature nanotechnology.

[45]  Chendong Zhang,et al.  Direct imaging of band profile in single layer MoS2 on graphite: quasiparticle energy gap, metallic edge states, and edge band bending. , 2014, Nano letters.

[46]  Likai Li,et al.  Black phosphorus field-effect transistors. , 2014, Nature nanotechnology.

[47]  Aaron M. Jones,et al.  Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions. , 2013, Nature nanotechnology.

[48]  Aaron M. Jones,et al.  Control of two-dimensional excitonic light emission via photonic crystal , 2013, 1311.6071.

[49]  P. Jarillo-Herrero,et al.  Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide. , 2013, Nature nanotechnology.

[50]  T. Mueller,et al.  Solar-energy conversion and light emission in an atomic monolayer p-n diode. , 2013, Nature nanotechnology.

[51]  X. Duan,et al.  Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. , 2013, Nature nanotechnology.

[52]  S. Louie,et al.  Optical spectrum of MoS2: many-body effects and diversity of exciton states. , 2013, Physical review letters.

[53]  Kenneth L. Shepard,et al.  Chip-integrated ultrafast graphene photodetector with high responsivity , 2013, Nature Photonics.

[54]  A. M. van der Zande,et al.  Controlling the spontaneous emission rate of monolayer MoS2 in a photonic crystal nanocavity. , 2013, Applied physics letters.

[55]  Ke Xu,et al.  High-responsivity graphene/silicon-heterostructure waveguide photodetectors , 2013, Nature Photonics.

[56]  A. Neto,et al.  Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films. , 2013 .

[57]  SUPARNA DUTTASINHA,et al.  Van der Waals heterostructures , 2013, Nature.

[58]  Andras Kis,et al.  Ultrasensitive photodetectors based on monolayer MoS2. , 2013, Nature nanotechnology.

[59]  Yilei Li,et al.  Probing symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation. , 2013, Nano letters.

[60]  Yugui Yao,et al.  Three-band tight-binding model for monolayers of group-VIB transition metal dichalcogenides , 2013, 1305.6089.

[61]  Timothy C. Berkelbach,et al.  Theory of neutral and charged excitons in monolayer transition metal dichalcogenides , 2013, 1305.4972.

[62]  Jr-Hau He,et al.  Few-Layer MoS2 with high broadband Photogain and fast optical switching for use in harsh environments. , 2013, ACS nano.

[63]  K. Mak,et al.  Observation of intense second harmonic generation from MoS 2 atomic crystals , 2013, 1304.4289.

[64]  E. Johnston-Halperin,et al.  Progress, challenges, and opportunities in two-dimensional materials beyond graphene. , 2013, ACS nano.

[65]  Aaron M. Jones,et al.  Optical generation of excitonic valley coherence in monolayer WSe2. , 2013, Nature nanotechnology.

[66]  T. Fromherz,et al.  CMOS-compatible graphene photodetector covering all optical communication bands , 2013, Nature Photonics.

[67]  P. Avouris,et al.  Electroluminescence in single layer MoS2. , 2012, Nano letters.

[68]  Aaron M. Jones,et al.  Electrical control of neutral and charged excitons in a monolayer semiconductor , 2012, Nature Communications.

[69]  J. Shan,et al.  Tightly bound trions in monolayer MoS2. , 2012, Nature materials.

[70]  M. Fontana,et al.  Electron-hole transport and photovoltaic effect in gated MoS2 Schottky junctions , 2012, Scientific Reports.

[71]  J. Rarity,et al.  Photonic quantum technologies , 2009, 1003.3928.

[72]  Jun Lou,et al.  Second harmonic microscopy of monolayer MoS 2 , 2013, 1302.3935.

[73]  A. Krasheninnikov,et al.  Effects of confinement and environment on the electronic structure and exciton binding energy of MoS2 from first principles , 2012 .

[74]  A. N. Grigorenko,et al.  Graphene plasmonics , 2012, Nature Photonics.

[75]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[76]  A. Ramasubramaniam Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides , 2012 .

[77]  K. Mak,et al.  Optical spectroscopy of graphene: From the far infrared to the ultraviolet , 2012 .

[78]  Hsin-Ying Chiu,et al.  Ultrafast and spatially resolved studies of charge carriers in atomically thin molybdenum disulfide , 2012, 1206.6055.

[79]  P. Tan,et al.  Robust optical emission polarization in MoS2 monolayers through selective valley excitation , 2012, 1206.5128.

[80]  S. Min,et al.  MoS₂ nanosheet phototransistors with thickness-modulated optical energy gap. , 2012, Nano letters.

[81]  Keliang He,et al.  Control of valley polarization in monolayer MoS2 by optical helicity. , 2012, Nature nanotechnology.

[82]  Walter R. L. Lambrecht,et al.  Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS 2 , 2012 .

[83]  F. Xia,et al.  Photoconductivity of biased graphene , 2012, Nature Photonics.

[84]  Wang Yao,et al.  Valley polarization in MoS2 monolayers by optical pumping. , 2012, Nature nanotechnology.

[85]  Ji Feng,et al.  Valley-selective circular dichroism of monolayer molybdenum disulphide , 2012, Nature Communications.

[86]  Wang Yao,et al.  Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. , 2011, Physical review letters.

[87]  M. Fuhrer,et al.  Dual-gated bilayer graphene hot-electron bolometer. , 2011, Nature nanotechnology.

[88]  M. Khajavikhan,et al.  Thresholdless nanoscale coaxial lasers , 2011, Nature.

[89]  J. Shan,et al.  Observation of tightly bound trions in monolayer MoS , 2012 .

[90]  Takashi Taniguchi,et al.  Hot Carrier–Assisted Intrinsic Photoresponse in Graphene , 2011, Science.

[91]  T. Korn,et al.  Low-temperature photocarrier dynamics in monolayer MoS2 , 2011, 1106.2951.

[92]  Á. Rubio,et al.  Dielectric screening in two-dimensional insulators: Implications for excitonic and impurity states in graphane , 2011, 1104.3346.

[93]  A. Ferrari,et al.  Graphene Photonics and Optoelectroncs , 2010, CLEO 2012.

[94]  Hartmut Haug,et al.  Exciton-polariton Bose-Einstein condensation , 2010 .

[95]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[96]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[97]  F. Xia,et al.  Ultrafast graphene photodetector. , 2009, Nature nanotechnology.

[98]  A. M. van der Zande,et al.  Photo-thermoelectric effect at a graphene interface junction. , 2009, Nano letters.

[99]  SUPARNA DUTTASINHA,et al.  Graphene: Status and Prospects , 2009, Science.

[100]  S. Lebègue,et al.  Electronic structure of two-dimensional crystals from ab-initio theory , 2009, 0901.0440.

[101]  F. Guinea,et al.  The electronic properties of graphene , 2007, Reviews of Modern Physics.

[102]  Ronald Hanson,et al.  Coherent manipulation of single spins in semiconductors , 2008, Nature.

[103]  G. Galli,et al.  Electronic properties of MoS2 nanoparticles , 2007 .

[104]  Wang Yao,et al.  Valley-contrasting physics in graphene: magnetic moment and topological transport. , 2007, Physical review letters.

[105]  Qian Niu,et al.  Berry phase effects on electronic properties , 2009, 0907.2021.

[106]  G. Sęk,et al.  Strong coupling in a single quantum dot semiconductor microcavity system , 2006, SPIE OPTO.

[107]  Masayuki Fujita,et al.  Simultaneous Inhibition and Redistribution of Spontaneous Light Emission in Photonic Crystals , 2005, Science.

[108]  K. Novoselov,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[109]  D. Englund,et al.  Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal. , 2005, Physical review letters.

[110]  J. Seiber Status and Prospects , 2005 .

[111]  G. Rupper,et al.  Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity , 2004, Nature.

[112]  S. Sarma,et al.  Spintronics: Fundamentals and applications , 2004, cond-mat/0405528.

[113]  D. Ritchie,et al.  Observation of Charge Transport by Negatively Charged Excitons , 2001, Science.

[114]  V. Garber,et al.  Gain mechanism in GaN Schottky ultraviolet detectors , 2001 .

[115]  Jean-Michel Gérard,et al.  Strong-coupling regime for quantum boxes in pillar microcavities: Theory , 1999 .

[116]  S. Sikdar,et al.  Fundamentals and applications , 1998 .

[117]  E. Purcell Spontaneous Emission Probabilities at Radio Frequencies , 1995 .

[118]  C. Weisbuch,et al.  Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. , 1992, Physical review letters.

[119]  H. Yokoyama,et al.  Physics and Device Applications of Optical Microcavities , 1992, Science.

[120]  Stephan W Koch,et al.  Quantum theory of the optical and electronic properties of semiconductors, fifth edition , 2009 .

[121]  H. Yokoyama,et al.  Rate equation analysis of microcavity lasers , 1989 .

[122]  David A. B. Miller,et al.  Linear and nonlinear optical properties of semiconductor quantum wells , 1989 .

[123]  Hartmut Haug,et al.  Optical switching in low-dimensional systems , 1989 .

[124]  Dawson,et al.  Linewidth dependence of radiative exciton lifetimes in quantum wells. , 1987, Physical review letters.

[125]  S. Sze Semiconductor Devices: Physics and Technology , 1985 .

[126]  A. Holmes-Siedle,et al.  Semiconductor Devices , 1976, 2018 International Semiconductor Conference (CAS).

[127]  L. Mattheiss Band Structures of Transition-Metal-Dichalcogenide Layer Compounds. , 1973 .

[128]  E. Purcell,et al.  Resonance Absorption by Nuclear Magnetic Moments in a Solid , 1946 .