Real-Time Binary Descriptor Based Background Modeling

In this paper, we propose a new binary descriptor based background modeling approach which is robust to lighting changes and dynamic backgrounds in the environment. Instead of using traditional parametric models, our background models are constructed by background instances using binary descriptors computed from observed backgrounds. As shown in the experiments, our method can achieve better foreground detection results and fewer false alarms compared to the state-of-the-art methods.

[1]  Pau-Choo Chung,et al.  Contrast context histogram - An efficient discriminating local descriptor for object recognition and image matching , 2008, Pattern Recognit..

[2]  Koen E. A. van de Sande,et al.  Evaluating Color Descriptors for Object and Scene Recognition , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Chun-Rong Huang,et al.  Binary invariant cross color descriptor using galaxy sampling , 2012, Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012).

[4]  Yaser Sheikh,et al.  Bayesian modeling of dynamic scenes for object detection , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Qi Tian,et al.  Statistical modeling of complex backgrounds for foreground object detection , 2004, IEEE Transactions on Image Processing.

[6]  Vincent Lepetit,et al.  BRIEF: Computing a Local Binary Descriptor Very Fast , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  W. Eric L. Grimson,et al.  Adaptive background mixture models for real-time tracking , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[8]  David G. Lowe,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004, International Journal of Computer Vision.

[9]  Kwang-Ting Cheng,et al.  Learning a sparse, corner-based representation for time-varying background modelling , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[10]  Kentaro Toyama,et al.  Wallflower: principles and practice of background maintenance , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[11]  Kazuhiko Sumi,et al.  Background subtraction based on cooccurrence of image variations , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[12]  Mubarak Shah,et al.  A hierarchical approach to robust background subtraction using color and gradient information , 2002, Workshop on Motion and Video Computing, 2002. Proceedings..

[13]  Benjamin Höferlin,et al.  Evaluation of background subtraction techniques for video surveillance , 2011, CVPR 2011.

[14]  Marc Van Droogenbroeck,et al.  ViBe: A Universal Background Subtraction Algorithm for Video Sequences , 2011, IEEE Transactions on Image Processing.

[15]  Yi-Ping Hung,et al.  Efficient hierarchical method for background subtraction , 2007, Pattern Recognit..

[16]  Dar-Shyang Lee,et al.  Effective Gaussian mixture learning for video background subtraction , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Marko Heikkilä,et al.  A texture-based method for modeling the background and detecting moving objects , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  Pau-Choo Chung,et al.  Online surveillance video synopsis , 2012, 2012 IEEE International Symposium on Circuits and Systems.

[20]  Larry S. Davis,et al.  Real-time foreground-background segmentation using codebook model , 2005, Real Time Imaging.