Beyond Intercalation: Nanoscale-Enabled Conversion Anode Materials for Lithium-Ion Batteries

The use of transition metal oxides as anode materials in lithium-ion batteries offers great advantages over graphitic carbon due to their ability to deliver much higher specific capacities. The mechanism with which they electrochemically react with lithium was found to be peculiar and termed “conversion” to distinguish it from other mechanisms such as intercalation, insertion, and alloying. In this chapter, we have reviewed the behavior of a wide variety of transition metal oxides in lithium-ion batteries and the effect of structure/property relationship on their performance. It was found that a key enabler to the electrochemical reactivity of transition metal oxides is the nanosize effect and essentially the formation of nanoparticles and nanocomposites.

[1]  J. Tirado,et al.  (57)Fe Mössbauer spectroscopy and electron microscopy study of metal extraction from CuFe(2)O(4) electrodes in lithium cells. , 2007, Chemphyschem : a European journal of chemical physics and physical chemistry.

[2]  Bing Tan,et al.  Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability. , 2008, Nano letters.

[3]  Michael A. Lowe,et al.  Spongelike Nanosized Mn3O4 as a High-Capacity Anode Material for Rechargeable Lithium Batteries , 2011 .

[4]  G. Yin,et al.  Evaluation of ZnO nanorod arrays with dandelion-like morphology as negative electrodes for lithium-ion batteries , 2009 .

[5]  J. Tarascon,et al.  Metal oxides as negative electrode materials in Li-ion cells , 2002 .

[6]  J. Tarascon,et al.  Structure, texture and reactivity versus lithium of chromium-based oxides films as revealed by TEM investigations , 2007 .

[7]  Yongying Yang,et al.  A comparison of anodically grown CuO nanotube film and Cu2O film as anodes for lithium ion batteries , 2008 .

[8]  H. Dai,et al.  Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries. , 2010, Journal of the American Chemical Society.

[9]  B. Chowdari,et al.  Nanophase ZnCo2O4 as a High Performance Anode Material for Li‐Ion Batteries , 2007 .

[10]  J. Tirado,et al.  CoFe2O4 and NiFe2O4 synthesized by sol–gel procedures for their use as anode materials for Li ion batteries , 2007 .

[11]  A. Dey,et al.  Electrochemical Alloying of Lithium in Organic Electrolytes , 1971 .

[12]  Jian Jiang,et al.  Carbon/ZnO Nanorod Array Electrode with Significantly Improved Lithium Storage Capability. , 2009 .

[13]  S. Boyanov,et al.  The electrochemical reactivity of the NiP3 skutterudite-type phase with lithium , 2008 .

[14]  Andrew J. Gmitter,et al.  The design of alternative nonaqueous high power chemistries , 2006 .

[15]  Ju-tang Sun,et al.  Synthesis and electrochemical performance of nanosized Co3O4 , 2003 .

[16]  H. Sakaebe,et al.  Preparation of NiS2 Using Spark-Plasma-Sintering Process and Its Electrochemical Properties , 2008 .

[17]  Liquan Chen,et al.  Nanocrystalline MnO thin film anode for lithium ion batteries with low overpotential , 2009 .

[18]  Jean-Marie Tarascon,et al.  Reactivity of transition metal (Co, Ni, Cu) sulphides versus lithium: The intriguing case of the copper sulphide , 2006 .

[19]  Jinping Liu,et al.  Large-Scale Porous Hematite Nanorod Arrays: Direct Growth on Titanium Foil and Reversible Lithium Storage , 2010 .

[20]  P. Bruce,et al.  Influence of size on the rate of mesoporous electrodes for lithium batteries. , 2010, Journal of the American Chemical Society.

[21]  José Manuel Amarilla,et al.  Iron oxide porous nanorods with different textural properties and surface composition: Preparation, characterization and electrochemical lithium storage capabilities , 2011 .

[22]  J. Tarascon,et al.  The electrochemical reduction of Co3O4 in a lithium cell , 2002 .

[23]  J. Tu,et al.  Improved electrochemical performances of core-shell Cu2O/Cu composite prepared by a simple one-step method , 2009 .

[24]  M. Stanley Whittingham,et al.  Chemistry of intercalation compounds: Metal guests in chalcogenide hosts , 1978 .

[25]  R. Huggins,et al.  Investigations of binary lithium-zinc, lithium-cadmium and lithium-lead alloys as negative electrodes in organic solvent-based electrolyte , 1986 .

[26]  Jing Li,et al.  Sodium Carboxymethyl Cellulose A Potential Binder for Si Negative Electrodes for Li-Ion Batteries , 2007 .

[27]  Y. Sharma,et al.  Studies on spinel cobaltites, FeCo2O4 and MgCo2O4 as anodes for Li-ion batteries , 2008 .

[28]  Linda F. Nazar,et al.  Positive Electrode Materials for Li-Ion and Li-Batteries† , 2010 .

[29]  Zaiping Guo,et al.  NiCo2O4 / C Nanocomposite as a Highly Reversible Anode Material for Lithium-Ion Batteries , 2008 .

[30]  J. Tarascon,et al.  Mesoporous Cr2O3 as negative electrode in lithium batteries: TEM study of the texture effect on the polymeric layer formation , 2008 .

[31]  Jun Yang,et al.  CoPx synthesis and lithiation by ball-milling for anode materials of lithium ion cells , 2005 .

[32]  Linda F. Nazar,et al.  Approaching Theoretical Capacity of LiFePO4 at Room Temperature at High Rates , 2001 .

[33]  Sang-Cheol Han,et al.  Charge–discharge mechanism of mechanically alloyed NiS used as a cathode in rechargeable lithium batteries , 2003 .

[34]  Glenn G. Amatucci,et al.  Structure and Electrochemistry of Carbon-Metal Fluoride Nanocomposites Fabricated by Solid-State Redox Conversion Reaction , 2005 .

[35]  Chang Sheh Lit,et al.  Fabrication of NiO Nanowall Electrodes for High Performance Lithium Ion Battery , 2008 .

[36]  L. Nazar,et al.  A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. , 2009, Nature materials.

[37]  Tsutomu Ohzuku,et al.  Novel lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries , 2003 .

[38]  P. Balbuena,et al.  Lithium-ion batteries : solid-electrolyte interphase , 2004 .

[39]  Marie-Liesse Doublet,et al.  Electrochemical Behaviors of Binary and Ternary Manganese Phosphides , 2005 .

[40]  Yong‐Sheng Hu,et al.  Electrode reactions of manganese oxides for secondary lithium batteries , 2010 .

[41]  G. Pistoia,et al.  Lithium batteries : science and technology , 2003 .

[42]  J. Tu,et al.  Electrochemical Performances of Ni-Coated ZnO as an Anode Material for Lithium-Ion Batteries , 2007 .

[43]  Jie Zhang,et al.  A study of novel anode material CoS2 for lithium ion battery , 2005 .

[44]  R. Huggins Alternative materials for negative electrodes in lithium systems , 2002 .

[45]  Tao Zheng,et al.  An Asymmetric Hybrid Nonaqueous Energy Storage Cell , 2001 .

[46]  Guangmin Zhou,et al.  Graphene-Wrapped Fe(3)O(4) Anode Material with Improved Reversible Capacity and Cyclic Stability for Lithium Ion Batteries , 2010 .

[47]  J. Goodenough,et al.  Structural characterization of the lithiated iron oxides LixFe3O4 and LixFe2O3 (0 , 1982 .

[48]  Jing-ying Xie,et al.  Electrochemical reactions of lithium with CuP2 and Li1.75Cu1.25P2 synthesized by ballmilling , 2003 .

[49]  L. Archer,et al.  Thermal formation of mesoporous single-crystal Co3O4 nano-needles and their lithium storage properties , 2008 .

[50]  Qinmin Pan,et al.  MnO/C Nanocomposites as High Capacity Anode Materials for Li-Ion Batteries , 2010 .

[51]  Taihong Wang,et al.  Facile preparation of porous one-dimensional Mn2O3 nanostructures and their application as anode materials for lithium-ion batteries , 2010 .

[52]  J. Tarascon,et al.  FeP: Another Attractive Anode for the Li-Ion Battery Enlisting a Reversible Two-Step Insertion/Conversion Process , 2006 .

[53]  Guangmin Zhou,et al.  Graphene anchored with co(3)o(4) nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. , 2010, ACS nano.

[54]  Bruno Scrosati,et al.  Nanostructured Sn–C Composite as an Advanced Anode Material in High‐Performance Lithium‐Ion Batteries , 2007 .

[55]  J. Cabana,et al.  Beyond Intercalation‐Based Li‐Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions , 2010, Advanced materials.

[56]  Jin-Song Hu,et al.  Carbon Coated Fe3O4 Nanospindles as a Superior Anode Material for Lithium‐Ion Batteries , 2008 .

[57]  Candela Vidal-Abarca,et al.  Sol–gel preparation of cobalt manganese mixed oxides for their use as electrode materials in lithium cells , 2007 .

[58]  M. Hon,et al.  The effect of TiO2 coating on the electrochemical performance of ZnO nanorod as the anode material for lithium-ion battery , 2011 .

[59]  Michael M. Thackeray,et al.  Manganese oxides for lithium batteries , 1997 .

[60]  L. A. Montoro,et al.  Gelatin/DMSO: a new approach to enhancing the performance of a pyrite electrode in a lithium battery , 2003 .

[61]  B. Scrosati,et al.  Ternary Sn-Co-C Li-ion battery electrode material prepared by high energy ball milling , 2007 .

[62]  X. Ai,et al.  Reversible Electrochemical Conversion Reaction of Li2O/CuO Nanocomposites and Their Application as High-Capacity Cathode Materials for Li-Ion Batteries , 2011 .

[63]  P. Novák,et al.  Study of styrene butadiene rubber and sodium methyl cellulose as binder for negative electrodes in lithium-ion batteries , 2006 .

[64]  Jian Jiang,et al.  Iron Oxide-Based Nanotube Arrays Derived from Sacrificial Template-Accelerated Hydrolysis: Large-Area Design and Reversible Lithium Storage , 2010 .

[65]  D. Linden Handbook Of Batteries , 2001 .

[66]  T. Iijima,et al.  Button-type lithium battery using copper oxide as a cathode , 1980 .

[67]  H. Kwon,et al.  Gram‐Scale Synthesis of Cu2O Nanocubes and Subsequent Oxidation to CuO Hollow Nanostructures for Lithium‐Ion Battery Anode Materials , 2009 .

[68]  Guohua Chen,et al.  Controllable synthesis of spinel nano-ZnMn2O4via a single source precursor route and its high capacity retention as anode material for lithium ion batteries , 2011 .

[69]  B. Scrosati,et al.  The effect of CoSn/CoSn2 phase ratio on the electrochemical behaviour of Sn40Co40C20 ternary alloy electrodes in lithium cells , 2008 .

[70]  J. Jamnik,et al.  Nanocrystallinity effects in lithium battery materials , 2003 .

[71]  Huakun Liu,et al.  Synthesis of NiO nanotubes for use as negative electrodes in lithium ion batteries , 2006 .

[72]  Ying Wang,et al.  Electrochemical Reactions of Lithium with Transition Metal Nitride Electrodes , 2004 .

[73]  Haoshen Zhou,et al.  The high power and high energy densities Li ion storage device by nanocrystalline and mesoporous Ni/NiO covered structure , 2006 .

[74]  M. S. Hegde,et al.  Synthesis, Characterization, and Li-Electrochemical Performance of Highly Porous Co3O4 Powders , 2007 .

[75]  Huaiyong Zhu,et al.  Preparation and Electrochemical Performance of Polycrystalline and Single Crystalline CuO Nanorods as Anode Materials for Li Ion Battery , 2004 .

[76]  Jean-Marie Tarascon,et al.  Effect of Particle Size on Lithium Intercalation into α ­ Fe2 O 3 , 2003 .

[77]  Qi-Zong Qin,et al.  Nanocrystalline tin oxides and nickel oxide film anodes for Li-ion batteries , 2003 .

[78]  Qi-Zong Qin,et al.  Cobalt ferrite thin films as anode material for lithium ion batteries , 2004 .

[79]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.

[80]  M. Thackeray,et al.  A preliminary investigation of the electrochemical performance of α-Fe2O3 and Fe3O4 cathodes in high-temperature cells , 1981 .

[81]  B. Scrosati,et al.  An electrochemical investigation of a Sn-Co-C ternary alloy as a negative electrode in Li-ion batteries , 2007 .

[82]  Marie-Liesse Doublet,et al.  Electrochemical Reactivity and Design of NiP2 Negative Electrodes for Secondary Li-Ion Batteries , 2005 .

[83]  Hong Li,et al.  Cr2O3-based anode materials for Li-ion batteries , 2005 .

[84]  N. Du,et al.  Porous Co3O4 Nanotubes Derived From Co4(CO)12 Clusters on Carbon Nanotube Templates: A Highly Efficient Material For Li‐Battery Applications , 2007 .

[85]  Liquan Chen,et al.  MnO powder as anode active materials for lithium ion batteries , 2010 .

[86]  Xiaozhen Wu,et al.  Hematite nanoflakes as anode electrode materials for rechargeable lithium-ion batteries , 2010 .

[87]  G. Rao,et al.  Nanoflake CoN as a high capacity anode for Li-ion batteries , 2009 .

[88]  P. Balaya,et al.  Nano-ionics in the context of lithium batteries , 2006 .

[89]  J. Weaving,et al.  Development of high energy density Li-ion batteries based on LiNi1-x-yCoxAlyO2 , 2001 .

[90]  J. Tarascon,et al.  Si Electrodes for Li-Ion batteries- A new way to look at an old problem , 2008 .

[91]  Shuru Chen,et al.  One-step fabrication of CuO nanoribbons array electrode and its excellent lithium storage performance , 2009 .

[92]  Sylvie Grugeon,et al.  Particle Size Effects on the Electrochemical Performance of Copper Oxides toward Lithium , 2001 .

[93]  J. Dahn,et al.  Comparison of mechanically alloyed and sputtered tin–cobalt–carbon as an anode material for lithium-ion batteries , 2008 .

[94]  Ying Wang,et al.  Electrochemical Reactivity Mechanism of Ni3 N with Lithium , 2004 .

[95]  Taihong Wang,et al.  Electrochemical performance of polycrystalline CuO nanowires as anode material for Li ion batteries , 2009 .

[96]  Yong Liang,et al.  A High Capacity Nano ­ Si Composite Anode Material for Lithium Rechargeable Batteries , 1999 .

[97]  Y. Sharma,et al.  Li-storage and cyclability of urea combustion derived ZnFe2O4 as anode for Li-ion batteries , 2008 .

[98]  P. Novák,et al.  CuO cathode in lithium cells: I. Influence of the decomposition conditions of Cu(OH)2 on the properties of CuO , 1985 .

[99]  J. Tarascon,et al.  A Transmission Electron Microscopy Study of the Reactivity Mechanism of Tailor-Made CuO Particles toward Lithium , 2001 .

[100]  A. Manthiram,et al.  Facile synthesis of carbon-decorated single-crystalline Fe3O4 nanowires and their application as high performance anode in lithium ion batteries. , 2009, Chemical communications.

[101]  Xingjiang Liu,et al.  Solid solution of nickel oxide and manganese oxide as negative active material for lithium secondary cells , 2005 .

[102]  Hui Wang,et al.  Structure and electrochemical performance of Fe3O4/graphene nanocomposite as anode material for lithium-ion batteries , 2011 .

[103]  Yu‐Guo Guo,et al.  Non-sacrificial template synthesis of Cr2O3–C hierarchical core/shell nanospheres and their application as anode materials in lithium-ion batteries , 2010 .

[104]  Ning Zhang,et al.  Hydrothermal synthesis and electrochemical properties of alpha-manganese sulfide submicrocrystals as an attractive electrode material for lithium-ion batteries , 2008 .

[105]  T. Osaka,et al.  Cycle and rate properties of mesoporous tin anode for lithium ion secondary batteries , 2008 .

[106]  Liquan Chen,et al.  Investigation on porous MnO microsphere anode for lithium ion batteries , 2011 .

[107]  Lifen Xiao,et al.  Nanocrystalline ZnMn2O4 as a novel lithium-storage material , 2008 .

[108]  Y. Sharma,et al.  Lithium recycling behaviour of nano-phase-CuCo2O4 as anode for lithium-ion batteries , 2007 .

[109]  Liquan Chen,et al.  Improve the electrochemical performances of Cr2O3 anode for lithium ion batteries , 2006 .

[110]  Jian Jiang,et al.  Direct Synthesis of CoO Porous Nanowire Arrays on Ti Substrate and Their Application as Lithium-Ion Battery Electrodes , 2010 .

[111]  Bing Sun,et al.  MnO/C core–shell nanorods as high capacity anode materials for lithium-ion batteries , 2011 .

[112]  Liquan Chen,et al.  Anodes based on oxide materials for lithium rechargeable batteries 1 1 Paper presented at the 1997 H , 1999 .

[113]  Y. Abu-Lebdeh,et al.  High capacity anode materials for Li-ion batteries based on spinel metal oxides AMn2O4 (A = Co, Ni, and Zn) , 2011 .

[114]  Studies on spinel cobaltites, FeCo 2 O 4 and MgCo 2 O 4 as anodes for Li-ion batteries , 2008 .

[115]  L. Nazar,et al.  Reversible Lithium Uptake by FeP2 , 2003 .

[116]  Palani Balaya,et al.  Fully Reversible Homogeneous and Heterogeneous Li Storage in RuO2 with High Capacity , 2003 .

[117]  W. Primak,et al.  Electrical Conductivities of Natural Graphite Crystals , 1953 .

[118]  L. Nazar,et al.  Facile Reversible Displacement Reaction of Cu3 P with Lithium at Low Potential , 2004 .

[119]  J. Tarascon,et al.  Combining electrochemistry and metallurgy for new electrode designs in Li-ion batteries , 2005 .

[120]  L. Nazar,et al.  Reversible lithium uptake by CoP3 at low potential: role of the anion , 2002 .

[121]  Lifen Xiao,et al.  Low temperature synthesis of flower-like ZnMn2O4 superstructures with enhanced electrochemical lithium storage , 2009 .

[122]  Joachim Maier,et al.  Reversible Formation and Decomposition of LiF Clusters Using Transition Metal Fluorides as Precursors and Their Application in Rechargeable Li Batteries , 2003 .

[123]  A. West,et al.  Co-doped Mn3O4: a possible anode material for lithium batteries , 2005 .

[124]  H. Bang,et al.  Effect of calcination temperature on morphology, crystallinity and electrochemical properties of nano-crystalline metal oxides (Co3O4, CuO, and NiO) prepared via ultrasonic spray pyrolysis , 2007 .

[125]  Vladimir I. Anisimov,et al.  Band-structure description of Mott insulators (NiO, MnO, FeO, CoO) , 1990 .

[126]  Zhen Zhou,et al.  Nanosheet-Based NiO Microspheres: Controlled Solvothermal Synthesis and Lithium Storage Performances , 2010 .

[127]  Qian Sun,et al.  An Anode Material of CrN for Lithium-Ion Batteries , 2007 .

[128]  H. A. Christopher,et al.  Lithium‐Aluminum Electrode , 1977 .

[129]  B. Hwang,et al.  Mesoporous carbon-encapsulated NiO nanocomposite negative electrode materials for high-rate Li-ion battery , 2010 .

[130]  Yu‐Guo Guo,et al.  Synthesis and Lithium Storage Properties of Co3O4 Nanosheet‐Assembled Multishelled Hollow Spheres , 2010 .

[131]  T. Brousse,et al.  Aluminum negative electrode in lithium ion batteries , 2001 .

[132]  Martin Winter,et al.  Small particle size multiphase Li-alloy anodes for lithium-ionbatteries , 1996 .

[133]  Chunmei Ban,et al.  Nanostructured Fe3O4/SWNT Electrode: Binder‐Free and High‐Rate Li‐Ion Anode , 2010, Advanced materials.

[134]  J. Jumas,et al.  Changes in oxidation state and magnetic order of iron atoms during the electrochemical reaction of lithium with NiFe2O4 , 2003 .

[135]  Qinmin Pan,et al.  Facile fabrication of porous NiO films for lithium-ion batteries with high reversibility and rate capability , 2009 .

[136]  G. Yushin,et al.  A Major Constituent of Brown Algae for Use in High-Capacity Li-Ion Batteries , 2011, Science.

[137]  P. Balaya,et al.  Li-Storage via Heterogeneous Reaction in Selected Binary Metal Fluorides and Oxides , 2004 .

[138]  Ali Eftekhari,et al.  Nanostructured Materials in Electrochemistry , 2008 .

[139]  Deren Yang,et al.  Porous ZnCo2O4 nanowires synthesis via sacrificial templates: high-performance anode materials of Li-ion batteries. , 2011, Inorganic chemistry.

[140]  E. Zhecheva,et al.  High-Performance Transition Metal Mixed Oxides in Conversion Electrodes: A Combined Spectroscopic and Electrochemical Study , 2007 .

[141]  J. Gabano,et al.  D‐Size Lithium Cupric Sulfide Cells , 1972 .

[142]  S. Dou,et al.  Porous Co3O4 nanoplatelets by self-supported formation as electrode Material for lithium-ion batteries , 2010 .

[143]  Tsutomu Ohzuku,et al.  Zero‐Strain Insertion Material of Li [ Li1 / 3Ti5 / 3 ] O 4 for Rechargeable Lithium Cells , 1995 .

[144]  J. Tarascon,et al.  Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries , 2000, Nature.

[145]  Weishan Li,et al.  A novel nanostructured spinel ZnCo2O4 electrode material: morphology conserved transformation from a hexagonal shaped nanodisk precursor and application in lithium ion batteries , 2010 .

[146]  K. Zaghib,et al.  Nano-particle Li4Ti5O12 spinel as electrode for electrochemical generators , 2003 .

[147]  Ying Wang,et al.  A Nanocrystalline NiO Thin-Film Electrode Prepared by Pulsed Laser Ablation for Li-Ion Batteries , 2002 .

[148]  Chunsheng Wang,et al.  Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells , 2007 .

[149]  R. Ruoff,et al.  Graphene and Graphene Oxide: Synthesis, Properties, and Applications , 2010, Advanced materials.

[150]  J. Maier Mass storage in space charge regions of nano-sized systems (Nano-ionics. Part V). , 2007, Faraday discussions.

[151]  G. Yin,et al.  Improving electrochemical performance of NiO films by electrodeposition on foam nickel substrates , 2009 .