Computing Vision Points in Polygons

Abstract. We consider a restricted version of the art gallery problem within simple polygons in which the guards are required to lie on a given one-dimensional object, a watchman route. We call this problem the visionpointproblem . We prove the following: • The original art gallery problem is NP-hard for the very restricted class of street polygons. • The vision point problem can be solved efficiently for the class of street polygons. • A linear time algorithm for the vision point problem exists for the subclass of street polygons called straightwalkable polygons.

[1]  B. Joe,et al.  Corrections to Lee's visibility polygon algorithm , 1987, BIT.

[2]  Svante Carlsson,et al.  Optimum Guard Covers and $m$-Watchmen Routes for Restricted Polygons , 1993, Int. J. Comput. Geom. Appl..

[3]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[4]  Rolf Klein,et al.  The two guards problem , 1991, SCG '91.

[5]  Subhash Suri,et al.  A pedestrian approach to ray shooting: shoot a ray, take a walk , 1993, SODA '93.

[6]  D. T. Lee,et al.  Euclidean shortest paths in the presence of rectilinear barriers , 1984, Networks.

[7]  Leonidas J. Guibas,et al.  Ray Shooting in Polygons Using Geodesic Triangulations , 1991, ICALP.

[8]  D. T. Lee,et al.  Visibility of a simple polygon , 1983, Comput. Vis. Graph. Image Process..

[9]  D. T. Lee,et al.  Computational complexity of art gallery problems , 1986, IEEE Trans. Inf. Theory.

[10]  Steve Fisk,et al.  A short proof of Chvátal's Watchman Theorem , 1978, J. Comb. Theory, Ser. B.

[11]  David Avis,et al.  A Linear Algorithm for Computing the Visibility Polygon from a Point , 1981, J. Algorithms.

[12]  Robert E. Tarjan,et al.  Fast Algorithms for Finding Nearest Common Ancestors , 1984, SIAM J. Comput..

[13]  V. Chvátal A combinatorial theorem in plane geometry , 1975 .

[14]  J. Sack,et al.  Minimum Decompositions of Polygonal Objects , 1985 .

[15]  Svante Carlsson,et al.  Finding the Shortest Watchman Route in a Simple Polygon , 1993, ISAAC.

[16]  Leonidas J. Guibas,et al.  Visibility and intersection problems in plane geometry , 1989, Discret. Comput. Geom..

[17]  Giri Narasimhan,et al.  LR-visibility in Polygons , 1997, Comput. Geom..

[18]  Simeon C. Ntafos,et al.  Optimum Watchman Routes , 1988, Inf. Process. Lett..

[19]  Rolf Klein,et al.  Walking an unknown street with bounded detour , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[20]  J. O'Rourke Art gallery theorems and algorithms , 1987 .

[21]  Svante Carlsson,et al.  Computing a Shortest Watchman Path in a Simple Polygon in Polynomial-Time , 1995, WADS.

[22]  T. Shermer Recent Results in Art Galleries , 1992 .

[23]  Svante Carlsson,et al.  Optimum Guard Covers and m-Watchmen Routes for Restricted Polygons , 1991, WADS.

[24]  Paul J. Heffernan An optimal algorithm for the two-guard problem , 1996, Int. J. Comput. Geom. Appl..

[25]  A. Aggarwal The art gallery theorem: its variations, applications and algorithmic aspects , 1984 .