The role of vacancies and local distortions in the design of new phase-change materials.

[1]  Single structure widely distributed in a GeTe-Sb2Te3 pseudobinary system: a rock salt structure is retained by intrinsically containing an enormous number of vacancies within its crystal. , 2006, Inorganic chemistry.

[2]  Arthur H. Edwards,et al.  Electronic structure of intrinsic defects in crystalline germanium telluride , 2006 .

[3]  Stefan Blügel,et al.  Unravelling the interplay of local structure and physical properties in phase-change materials , 2006 .

[4]  Richard Dronskowski,et al.  Computational Chemistry of Solid State Materials , 2005 .

[5]  M. Lankhorst,et al.  Low-cost and nanoscale non-volatile memory concept for future silicon chips , 2005, Nature materials.

[6]  N. Yamada,et al.  Large displacement of germanium atoms in crystalline Ge2Sb2Te5 , 2005 .

[7]  N. Yamada,et al.  Structures of stable and metastable Ge2Sb2Te5, an intermetallic compound in GeTe-Sb2Te3 pseudobinary systems. , 2004, Acta crystallographica. Section B, Structural science.

[8]  J. Tominaga,et al.  Understanding the phase-change mechanism of rewritable optical media , 2004, Nature materials.

[9]  Noboru Yamada,et al.  Structural investigation of GeSb 2 Te 4 : A high-speed phase-change material , 2004 .

[10]  A. Pirovano,et al.  Electronic switching in phase-change memories , 2004, IEEE Transactions on Electron Devices.

[11]  In situ transmission electron microscopy study of the crystallization of Ge2Sb2Te5 , 2004 .

[12]  N. Mousseau,et al.  Sampling the diffusion paths of a neutral vacancy in silicon with quantum mechanical calculations , 2003, cond-mat/0308289.

[13]  Matthieu Verstraete,et al.  First-principles computation of material properties: the ABINIT software project , 2002 .

[14]  Matthias Wuttig,et al.  The quest for fast phase change materials , 2002 .

[15]  Noboru Yamada,et al.  A Study of Highly Symmetrical Crystal Structures, Commonly Seen in High-Speed Phase-Change Materials, Using Synchrotron Radiation , 2002 .

[16]  M. Lankhorst,et al.  Modelling glass transition temperatures of chalcogenide glasses. Applied to phase-change optical recording materials , 2002 .

[17]  R. Dronskowski,et al.  Structural and Electronic Peierls Distortions in the Elements (A): The Crystal Structure of Tellurium , 2002 .

[18]  Guo-Fu Zhou,et al.  Materials aspects in phase change optical recording , 2001 .

[19]  Xavier Gonze,et al.  The ABINIT software project , 2001 .

[20]  Wouter Leibbrandt,et al.  Phase-Change Media for High-Density Optical Recording , 2001 .

[21]  G. Papoian,et al.  Total energy partitioning within a one-electron formalism: A Hamilton population study of surface–CO interaction in the c(2×2)-CO/ Ni(100) chemisorption system , 1999 .

[22]  G. Miller,et al.  A Pictorial Approach to Molecular Orbital Bonding in Polymers: Non-Mathematical but Honest , 1999 .

[23]  M. Scheffler,et al.  Ab initio pseudopotentials for electronic structure calculations of poly-atomic systems using density-functional theory , 1998, cond-mat/9807418.

[24]  J. Gaspard,et al.  Peierls instabilities in covalent structures I. Electronic structure, cohesion and the Z = 8 – N rule , 1998 .

[25]  Stefan Goedecker,et al.  Fast Radix 2, 3, 4, and 5 Kernels for Fast Fourier Transformations on Computers with Overlapping Multiply-Add Instructions , 1997, SIAM J. Sci. Comput..

[26]  J. Burdett Chemical Bonds: A Dialog , 1997 .

[27]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[28]  Noboru Yamada,et al.  Erasable Phase-Change Optical Materials , 1996 .

[29]  X. Gonze,et al.  Towards a potential-based conjugate gradient algorithm for order-N self-consistent total energy calculations. , 1996, Physical review. B, Condensed matter.

[30]  Richard Dronskowski,et al.  Crystal orbital Hamilton populations (COHP): energy-resolved visualization of chemical bonding in solids based on density-functional calculations , 1993 .

[31]  J. Gaspard,et al.  Hume-Rothery rule in V–VI compounds , 1992 .

[32]  T. Arias,et al.  Iterative minimization techniques for ab initio total energy calculations: molecular dynamics and co , 1992 .

[33]  Crystallization studies of Ge:Sb:Te optical memory materials , 1992 .

[34]  Hamann Generalized norm-conserving pseudopotentials. , 1989, Physical review. B, Condensed matter.

[35]  R. Hoffman Solids and Surfaces: A Chemist's View of Bonding in Extended Structures , 1989 .

[36]  Ralph G. Pearson,et al.  Absolute Electronegativity and Hardness: Application to Inorganic Chemistry , 1988 .

[37]  J. Gaspard,et al.  Peierls instabilities in covalent structures , 1987 .

[38]  Ove Jepsen,et al.  Explicit, First-Principles Tight-Binding Theory , 1984 .

[39]  H. Skriver The LMTO Method , 1984 .

[40]  W. M. Temmerman,et al.  The electronic structure of complex systems , 1984 .

[41]  J. Burdett,et al.  A STUDY OF THE ARSENIC, BLACK PHOSPHORUS, AND OTHER STRUCTURES DERIVED FROM ROCK SALT BY BOND-BREAKING PROCESSES. II. BAND STRUCTURE CALCULATIONS AND THE E IMPORTANCE OF THE GAUCHE EFFECT , 1982 .

[42]  T. J. Mclarnan,et al.  A study of the arsenic, black phosphorus, and other structures derived from rock salt by bond‐breaking processes. I. Structural enumeration , 1981 .

[43]  T. J. Mclarnan,et al.  A study of the arsenic, black phosphorus, and other structures derived from rock salt by bond‐breaking processes. II. Band structure calculations and the importance of the gauche effect , 1981 .

[44]  D. Adler,et al.  Threshold Switching in Chalcogenide-Glass Thin Films , 1980 .

[45]  O. K. Andersen,et al.  Linear methods in band theory , 1975 .

[46]  L. Hedin,et al.  A local exchange-correlation potential for the spin polarized case. i , 1972 .

[47]  Marc Kastner,et al.  Bonding Bands, Lone-Pair Bands, and Impurity States in Chalcogenide Semiconductors , 1972 .

[48]  S. Ovshinsky Reversible Electrical Switching Phenomena in Disordered Structures , 1968 .

[49]  R. Peierls,et al.  Quantum theory of solids , 1956 .

[50]  W. Kohn,et al.  Solution of the Schrödinger Equation in Periodic Lattices with an Application to Metallic Lithium , 1954 .

[51]  J. Korringa,et al.  On the calculation of the energy of a Bloch wave in a metal , 1947 .