Bayesian inference for long-term prediction of significant wave height

Abstract This paper considers the problem of estimating long-term predictions of significant wave-height. A method which combines Bayesian methodology and extreme value techniques is adopted. Inferences are based on the Metropolis–Hastings algorithm implemented in an appropriate Markov Chain Monte Carlo scheme. The method is applied to obtain return values of extreme values of significant wave height collected on the northern North Sea. The results are compared with those obtained by Guedes Soares and Scotto [Guedes Soares, C. and Scotto, M.G., 2004. Application of the r-order statistics for long-term predictions of significant wave heights. Coastal Engineering , 51, 387–394].

[1]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[2]  Stuart G. Coles,et al.  Bayesian methods in extreme value modelling: a review and new developments. , 1996 .

[3]  Ali S. Hadi,et al.  Extreme Value and Related Models with Applications in Engineering and Science , 2004 .

[4]  C. Guedes Soares,et al.  Modelling uncertainty in long-term predictions of significant wave height , 2001 .

[5]  Michael A. Stephens,et al.  On the Accuracy of Simulated Percentage Points , 1983 .

[6]  S. Coles,et al.  An Introduction to Statistical Modeling of Extreme Values , 2001 .

[7]  J. Q. Smith,et al.  1. Bayesian Statistics 4 , 1993 .

[8]  G. S. Lingappaiah Bayesian Prediction Regions for the Extreme Order Statistics , 1984 .

[9]  S. Caires,et al.  100-Year Return Value Estimates for Ocean Wind Speed and Significant Wave Height from the ERA-40 Data , 2005 .

[10]  D. Walshaw Modelling extreme wind speeds in regions prone to hurricanes , 2000 .

[11]  Scott A. Sisson,et al.  A fully probabilistic approach to extreme rainfall modeling , 2003 .

[12]  A. H. El-Shaarawi,et al.  ON THE CALCULATION OF EXTREME WAVE HEIGHTS: A REVIEW , 1986 .

[13]  Adrian F. M. Smith,et al.  Bayesian computation via the gibbs sampler and related markov chain monte carlo methods (with discus , 1993 .

[14]  Richard L. Smith,et al.  A Comparison of Maximum Likelihood and Bayesian Estimators for the Three‐Parameter Weibull Distribution , 1987 .

[15]  J. Teugels,et al.  Statistics of Extremes , 2004 .

[16]  D.J.T. Carter,et al.  Estimating return values of environmental parameters , 2007 .

[17]  C. Guedes Soares,et al.  An Application of the Peaks Over Threshold Method to Predict Extremes of Significant Wave Height , 1998 .

[18]  C. Guedes Soares,et al.  Application of the r largest-order statistics for long-term predictions of significant wave height , 2004 .

[19]  Jonathan A. Tawn,et al.  The multivariate Gaussian tail model: an application to oceanographic data , 2000 .

[20]  M. I. Ortego,et al.  Wave-height hazard analysis in Eastern Coast of Spain - Bayesian approach using generalized Pareto distribution , 2005 .

[21]  J. A. Achcar,et al.  Transformation of Survival Data to an Extreme Value Distribution , 1987 .

[22]  Paul Stansell,et al.  Distributions of extreme wave, crest and trough heights measured in the North Sea , 2005 .

[23]  R. Rackwitz,et al.  On predictive distribution functions for the three asymptotic extreme value distributions , 1992 .

[24]  Jonathan A. Tawn,et al.  A Bayesian Analysis of Extreme Rainfall Data , 1996 .

[25]  Steven R. Winterstein,et al.  Comparing Extreme Wave Estimates From Hourly And Annual Data , 2001 .

[26]  John Geweke,et al.  Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments , 1991 .

[27]  PAUL EMBRECHTS,et al.  Modelling of extremal events in insurance and finance , 1994, Math. Methods Oper. Res..

[28]  Philip Jonathan,et al.  Extreme Value Analysis of North Sea Storm Severity , 1998 .

[29]  C. Guedes Soares,et al.  Modelling distributions of significant wave height , 2000 .

[30]  Carlos Guedes Soares,et al.  A 40 Year Hindcast of Wind, Sea Level and Waves in European Waters , 2002 .

[31]  C. Soares,et al.  Statistical Uncertainty in Long-Term Distributions of Significant Wave Height , 1996 .

[32]  Luis R. Pericchi,et al.  Anticipating catastrophes through extreme value modelling , 2003 .