Structure-property relations of lightweight Ti-Sc-Zr-Nb-V high-entropy alloys

[1]  Yan Chen,et al.  High-throughput design of high-performance lightweight high-entropy alloys , 2021, Nature Communications.

[2]  N. Stepanov,et al.  Design and characterization of eutectic refractory high entropy alloys , 2021, Materialia.

[3]  C. Du,et al.  Bulk nanocrystalline boron-doped VNbMoTaW high entropy alloys with ultrahigh strength, hardness, and resistivity , 2021 .

[4]  Hongxi Liu,et al.  Lightweight refractory high entropy alloy coating by laser cladding on Ti–6Al–4V surface , 2021 .

[5]  Tao Yang,et al.  Ultrahigh strength and ductility in newly developed materials with coherent nanolamellar architectures , 2020, Nature Communications.

[6]  Angelo Oñate Soto,et al.  Thermodynamic analysis of high entropy alloys and their mechanical behavior in high and low-temperature conditions with a microstructural approach - A review , 2020 .

[7]  D. Kong,et al.  Effect of superheating on microstructure and wear resistance of high-entropy Al1.8CrCuFeNi2 alloy , 2020 .

[8]  Tongmin Wang,et al.  Effect of Ti content on microstructure and properties of TixZrVNb refractory high-entropy alloys , 2020, International Journal of Minerals, Metallurgy and Materials.

[9]  Y. C. Wu,et al.  Microstructure and mechanical properties of Tix(AlCrVNb)100-x light weight multi-principal element alloys , 2020 .

[10]  Q. Shen,et al.  Microstructure and mechanical properties of RexNbMoTaW high-entropy alloys prepared by arc melting using metal powders , 2020 .

[11]  Xin Wang,et al.  Microstructures and corrosion resistance properties of as-cast and homogenized AlFeNiCuCr high entropy alloy , 2020 .

[12]  Fusen Yuan,et al.  Observation of FCC-Zr phase in as-cast Zircaloy-4 alloy , 2020 .

[13]  J. C. Huang,et al.  Dual heterogeneous structures lead to ultrahigh strength and uniform ductility in a Co-Cr-Ni medium-entropy alloy , 2020, Nature Communications.

[14]  W. Steurer Single-phase high-entropy alloys – A critical update , 2020 .

[15]  N. Stepanov,et al.  Structure and mechanical properties of an in situ refractory Al20Cr10Nb15Ti20V25Zr10 high entropy alloy composite , 2020, Materials Letters.

[16]  Spencer L. Thomas,et al.  Vacancy Diffusion in Multi-Principal Element Alloys: The Role of Chemical Disorder in the Ordered Lattice , 2020, Acta Materialia.

[17]  W. Curtin,et al.  Mechanistic origin of high strength in refractory BCC high entropy alloys up to 1900K , 2019, Acta Materialia.

[18]  W. Curtin,et al.  Theory of screw dislocation strengthening in random BCC alloys from dilute to “High-Entropy” alloys , 2020 .

[19]  A. Clarke,et al.  Solid-solution strengthening in refractory high entropy alloys , 2019, Acta Materialia.

[20]  A. Takeuchi,et al.  High-Entropy Alloys with Hexagonal Close-Packed Structure in Ir26Mo20Rh22.5Ru20W11.5 and Ir25.5Mo20Rh20Ru25W9.5 Alloys Designed by Sandwich Strategy for the Valence Electron Concentration of Constituent Elements in the Periodic Chart , 2019, MATERIALS TRANSACTIONS.

[21]  P. Liaw,et al.  Grain growth and Hall-Petch relationship in a refractory HfNbTaZrTi high-entropy alloy , 2019, Journal of Alloys and Compounds.

[22]  M. Ghazisaeidi,et al.  Solid solution strengthening theories of high-entropy alloys , 2019, Materials Characterization.

[23]  Gang Wang,et al.  Novel Ultralight-Weight Complex Concentrated Alloys with High Strength , 2019, Materials.

[24]  J. Schroers,et al.  Phase selection motifs in High Entropy Alloys revealed through combinatorial methods: Large atomic size difference favors BCC over FCC , 2019, Acta Materialia.

[25]  Yanfei Gao,et al.  Enhanced strength–ductility synergy in ultrafine-grained eutectic high-entropy alloys by inheriting microstructural lamellae , 2019, Nature Communications.

[26]  J. Eckert,et al.  Optimizing mechanical properties of Fe26.7Co26.7Ni26.7Si8.9B11 high entropy alloy by inducing hypoeutectic to quasi-duplex microstructural transition , 2019, Scientific Reports.

[27]  P. Liaw,et al.  Phase transformations of HfNbTaTiZr high-entropy alloy at intermediate temperatures , 2019, Scripta Materialia.

[28]  Daniel B. Miracle,et al.  From high-entropy alloys to complex concentrated alloys , 2018, Comptes Rendus Physique.

[29]  Gang Sha,et al.  High-content ductile coherent nanoprecipitates achieve ultrastrong high-entropy alloys , 2018, Nature Communications.

[30]  Jingchuan Zhu,et al.  Wear and oxidation resistances of AlCrFeNiTi-based high entropy alloys , 2018, Intermetallics.

[31]  Xueliang Li,et al.  Preliminarily optimizing glass-forming compositions in metal-metal type ternary alloy systems with a large-sized solvent element , 2018, AIP Advances.

[32]  A. Gebert,et al.  Microstructure, mechanical and thermal oxidation behavior of AlNbTiZr high entropy alloy , 2018, Intermetallics.

[33]  Daniel B. Miracle,et al.  Development and exploration of refractory high entropy alloys—A review , 2018, Journal of Materials Research.

[34]  Vinod Kumar,et al.  Structure and properties of lightweight high entropy alloys: a brief review , 2018 .

[35]  H. Wang,et al.  Microstructure and mechanical properties of a novel refractory AlNbTiZr high-entropy alloy , 2018 .

[36]  Fan Zhang,et al.  Phase stability and transformation in a light-weight high-entropy alloy , 2018 .

[37]  N. Stepanov,et al.  Aging behavior of the HfNbTaTiZr high entropy alloy , 2018 .

[38]  N. Schell,et al.  Thermodynamic instability of a nanocrystalline, single-phase TiZrNbHfTa alloy and its impact on the mechanical properties , 2018 .

[39]  Steve Brown,et al.  Hume-Rothery for HEA classification and self-organizing map for phases and properties prediction , 2017 .

[40]  Daniel B. Miracle,et al.  High-Entropy Alloys: A Current Evaluation of Founding Ideas and Core Effects and Exploring “Nonlinear Alloys” , 2017, JOM.

[41]  B. Liu,et al.  Effect of lattice distortion on solid solution strengthening of BCC high-entropy alloys , 2017 .

[42]  X. Zu,et al.  DFT study of hydrogen and helium defects at the (112̄1) twin boundary in hcp scandium , 2017 .

[43]  S. Ni,et al.  Mechanisms for deformation induced hexagonal close-packed structure to face-centered cubic structure transformation in zirconium , 2017 .

[44]  Fuyang Tian,et al.  Predicting single phase CrMoWX high entropy alloys from empirical relations in combination with first-principles calculations , 2017 .

[45]  J. Qiao,et al.  Mechanical properties of refractory high-entropy alloys: Experiments and modeling , 2017 .

[46]  M. Janeček,et al.  Evolution of ω phase during heating of metastable β titanium alloy Ti–15Mo , 2017, Journal of Materials Science.

[47]  D. Miracle,et al.  A critical review of high entropy alloys and related concepts , 2016 .

[48]  Yong Zhang,et al.  Design of Light-Weight High-Entropy Alloys , 2016, Entropy.

[49]  A. V. D. Walle,et al.  First-principles study of phase equilibrium in Ti–V, Ti–Nb, and Ti–Ta alloys , 2016 .

[50]  Amit Kumar,et al.  An Insight into Evolution of Light Weight High Entropy Alloys: A Review , 2016 .

[51]  Yong Zhang,et al.  A hexagonal close-packed high-entropy alloy: The effect of entropy , 2016 .

[52]  B. S. Murty,et al.  Kinetic modification of the ‘confusion principle’ for metallic glass formation , 2016 .

[53]  N. Jones,et al.  High-entropy alloys: a critical assessment of their founding principles and future prospects , 2016 .

[54]  Paweł T. Jochym,et al.  Microstructure and mechanical properties of the novel Hf25Sc25Ti25Zr25 equiatomic alloy with hexagonal solid solutions , 2016 .

[55]  Nikita Stepanov,et al.  An AlNbTiVZr0.5 high-entropy alloy combining high specific strength and good ductility , 2015 .

[56]  N. Stepanov,et al.  Structure and mechanical properties of the AlCrxNbTiV (x = 0, 0.5, 1, 1.5) high entropy alloys , 2015 .

[57]  Oleg N. Senkov,et al.  Microstructure and properties of a refractory high-entropy alloy after cold working , 2015 .

[58]  D. E. Alman,et al.  Design of Refractory High-Entropy Alloys , 2015, JOM.

[59]  Douglas L. Irving,et al.  A Novel Low-Density, High-Hardness, High-entropy Alloy with Close-packed Single-phase Nanocrystalline Structures , 2015 .

[60]  N. Stepanov,et al.  Effect of Al on structure and mechanical properties of AlxNbTiVZr (x = 0, 0.5, 1, 1.5) high entropy alloys , 2015 .

[61]  Nikita Stepanov,et al.  Structure and mechanical properties of a light-weight AlNbTiV high entropy alloy , 2015 .

[62]  Yiping Lu,et al.  Effects of electro-negativity on the stability of topologically close-packed phase in high entropy alloys , 2014 .

[63]  Daniel B. Miracle,et al.  Microstructure and Properties of Aluminum-Containing Refractory High-Entropy Alloys , 2014, JOM.

[64]  Wei Zhang,et al.  High-Entropy Alloys with a Hexagonal Close-Packed Structure Designed by Equi-Atomic Alloy Strategy and Binary Phase Diagrams , 2014 .

[65]  K. Dahmen,et al.  Microstructures and properties of high-entropy alloys , 2014 .

[66]  David E. Alman,et al.  Searching for Next Single-Phase High-Entropy Alloy Compositions , 2013, Entropy.

[67]  H. Okamoto Sc-Ti (Scandium-Titanium) , 2013 .

[68]  Oleg N. Senkov,et al.  Low-Density, Refractory Multi-Principal Element Alloys of the Cr-Nb-Ti-V-Zr System: Microstructure and Phase Analysis (Postprint) , 2013 .

[69]  H. Nam,et al.  Effects of atomic size difference and heat of mixing parameters on the local structure of a model metallic glass system , 2013, Metals and Materials International.

[70]  A. Mazilkin,et al.  Effective Temperature of High Pressure Torsion in Zr-Nb Alloys , 2012 .

[71]  Yong Zhang,et al.  Prediction of high-entropy stabilized solid-solution in multi-component alloys , 2012 .

[72]  Liufa Liu,et al.  Solidification interface morphology pattern in the undercooled Co–24.0 at.% Sn eutectic melt , 2011 .

[73]  Y. K. Zhang,et al.  New evidence for the dual origin of anomalous eutectic structures in undercooled Ni–Sn alloys: In situ observations and EBSD characterization , 2011 .

[74]  C. Liu,et al.  Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys , 2011 .

[75]  P. Liaw,et al.  Refractory high-entropy alloys , 2010 .

[76]  V. Raghavan Fe-Nb-V (Iron-Niobium-Vanadium) , 2010 .

[77]  Min Ji,et al.  Influence of the electronic structure on the ductile behavior of B2 CsCl-type AB intermetallics , 2009 .

[78]  Zushu Hu,et al.  New criteria of glass forming ability, thermal stability and characteristic temperatures for various bulk metallic glass systems , 2007 .

[79]  N. Masahashi,et al.  Composition dependence of young’s modulus in Ti-V, Ti-Nb, and Ti-V-Sn alloys , 2006 .

[80]  C. Leyens,et al.  Titanium and titanium alloys : fundamentals and applications , 2005 .

[81]  James R. Morris,et al.  Ab initio calculation of bulk and defect properties of ductile rare-earth intermetallic compounds , 2004 .

[82]  T. Shun,et al.  Nanostructured High‐Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes , 2004 .

[83]  J. Yeh,et al.  Wear resistance and high-temperature compression strength of Fcc CuCoNiCrAl0.5Fe alloy with boron addition , 2004 .

[84]  Q. Jiang,et al.  A valence electron concentration criterion for glass-formation ability of metallic liquids , 2003 .

[85]  Akira Takeuchi,et al.  Calculations of mixing enthalpy and mismatch entropy for ternary amorphous alloys : Special issue on bulk amorphous, nano-crystalline and nano-quasicrystalline alloys , 2000 .

[86]  H. Okamoto Comment on Ti-V (titanium-vanadium) , 1995 .

[87]  P. Wollants,et al.  Thermodynamic assessment of the TiZr system and calculation of the NbTiZr phase diagram , 1994 .

[88]  P. Wollants,et al.  Thermodynamic calculation of Nb-Ti-V phase diagram , 1994 .

[89]  M. Enomoto The Ti-V-Zr system (titanium-vanadium-zirconium) , 1992 .

[90]  A. Palenzona,et al.  The Sc-Zr (Scandium-Zirconium) System , 1991 .

[91]  U. Kattner,et al.  The stable and metastable Ti-Nb phase diagrams , 1988 .

[92]  J. Smith Nb−V Phase diagram , 1983 .

[93]  J. Murray The Ti−Zr (Titanium-Zirconium) system , 1981 .

[94]  R. Elliott,et al.  Eutectic solidification , 1975 .

[95]  E. Parthé,et al.  AB COMPOUNDS WITH Sc, Y AND RARE EARTH METALS. I. SCANDIUM AND YTTRIUM COMPOUNDS WITH CrB AND CsCl STRUCTURE , 1965 .