Estimating Movement From Mobile Telephony Data

Mobile enabled devices are ubiquitous in modern society. The information gathered by their normal service operations has become one of the primary data sources used in the understanding of human mobility, social connection and information transfer. This thesis investigates techniques that can extract useful information from anonymised call detail records (CDR). CDR consist of mobile subscriber data related to people in connection with the network operators, the nature of their communication activity (voice, SMS, data, etc.), duration of the activity and starting time of the activity and servicing cell identification numbers of both the sender and the receiver when available. The main contributions of the research are a methodology for distance measurements which enables the identification of mobile subscriber travel paths and a methodology for population density estimation based on significant mobile subscriber regions of interest. In addition, insights are given into how a mobile network operator may use geographically located subscriber data to create new revenue streams and improved network performance. A range of novel algorithms and techniques underpin the development of these methodologies. These include, among others, techniques for CDR feature extraction, data visualisation and CDR data cleansing. The primary data source used in this body of work was the CDR of Meteor, a mobile network operator in the Republic of Ireland. The Meteor network under investigation has just over 1 million customers, which represents approximately a quarter of the country’s 4.6 million inhabitants, and operates using both 2G and 3G cellular telephony technologies. Results show that the steady state vector analysis of modified Markov chain mobility models can return population density estimates comparable to population estimates obtained through a census. Evaluated using a test dataset, results of travel path identification showed that developed distance measurements achieved greater accuracy when classifying the routes CDR journey trajectories took compared to traditional trajectory distance measurements. Results from subscriber segmentation indicate that subscribers who have perceived similar relationships to geographical features can be grouped based on weighted steady state mobility vectors. Overall, this thesis proposes novel algorithms and techniques for the estimation of movement from mobile telephony data addressing practical issues related to sampling, privacy and spatial uncertainty.

[1]  Francisco G. Benitez,et al.  Review of traffic data estimations extracted from cellular networks , 2008 .

[2]  Yilin Wu,et al.  The impact of public opinion on board structure changes, director career progression, and CEO turnover: evidence from CalPERS' corporate governance program , 2004 .

[3]  Juyong Park,et al.  The eigenmode analysis of human motion , 2010, 1603.04810.

[4]  Tieniu Tan,et al.  Semantic interpretation of object activities in a surveillance system , 2002, Object recognition supported by user interaction for service robots.

[5]  J. Hughes,et al.  Nicotine dependence and WHO mental health surveys. , 2004, JAMA.

[6]  Ming-Hui Lin,et al.  Data fusion methods for accuracy improvement in wireless location systems , 2004, 2004 IEEE Wireless Communications and Networking Conference (IEEE Cat. No.04TH8733).

[7]  C. Cardelino,et al.  Daily Variability of Motor Vehicle Emissions Derived from Traffic Counter Data. , 1998, Journal of the Air & Waste Management Association.

[8]  David J. DeWitt,et al.  Mondrian Multidimensional K-Anonymity , 2006, 22nd International Conference on Data Engineering (ICDE'06).

[9]  Robert Shorten,et al.  Traffic modelling framework for electric vehicles , 2012, Int. J. Control.

[10]  Thomas Liebig,et al.  Visual Analytics for Understanding Spatial Situations from Episodic Movement Data , 2012, KI - Künstliche Intelligenz.

[11]  Etienne Huens,et al.  Geographical dispersal of mobile communication networks , 2008, 0802.2178.

[12]  Andres Sevtsuk Mapping the MIT Campus in Real Time Using WiFi , 2009, Handbook of Research on Urban Informatics.

[13]  John Friedmann,et al.  Territory and Function: The Evolution of Regional Planning , 1982 .

[14]  B. L. Welch The generalisation of student's problems when several different population variances are involved. , 1947, Biometrika.

[15]  Carlo Ratti,et al.  Eigenplaces: Analysing Cities Using the Space–Time Structure of the Mobile Phone Network , 2009 .

[16]  Zehang Sun,et al.  On-road vehicle detection: a review , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  R. Ahas,et al.  Daily rhythms of suburban commuters' movements in the Tallinn metropolitan area: Case study with mobile positioning data , 2010 .

[18]  Marco Heurich,et al.  An event-based conceptual model for context-aware movement analysis , 2011, Int. J. Geogr. Inf. Sci..

[19]  Cecilia Mascolo,et al.  A Tale of Many Cities: Universal Patterns in Human Urban Mobility , 2011, PloS one.

[20]  Vikram Patel,et al.  Depression, chronic diseases, and decrements in health: results from the World Health Surveys , 2007, The Lancet.

[21]  Atsuyuki Okabe,et al.  Spatial Tessellations: Concepts and Applications of Voronoi Diagrams , 1992, Wiley Series in Probability and Mathematical Statistics.

[22]  Johan Bollen,et al.  Twitter mood predicts the stock market , 2010, J. Comput. Sci..

[23]  Ahmed Helmy,et al.  A survey of mobility modeling and analysis in wireless adhoc networks , 2004 .

[24]  David K. Y. Yau,et al.  Privacy vulnerability of published anonymous mobility traces , 2010, MobiCom.

[25]  A. Barabasi,et al.  Analysis of a large-scale weighted network of one-to-one human communication , 2007, physics/0702158.

[26]  Daniel S. Hirschberg,et al.  Algorithms for the Longest Common Subsequence Problem , 1977, JACM.

[27]  Daniel R. Fesenmaier,et al.  Multidestination Pleasure Travel Patterns: Empirical Evidence from the American Travel Survey , 2003 .

[28]  David J. Danelski,et al.  Privacy and Freedom , 1968 .

[29]  Peter Nijkamp,et al.  Mobile phone data from GSM networks for traffic parameter and urban spatial pattern assessment: a review of applications and opportunities , 2011, GeoJournal.

[30]  Tracy Camp,et al.  A survey of mobility models for ad hoc network research , 2002, Wirel. Commun. Mob. Comput..

[31]  Eamonn J. Keogh,et al.  Scaling up dynamic time warping for datamining applications , 2000, KDD '00.

[32]  Massimo Barbaro,et al.  A Face Is Exposed for AOL Searcher No , 2006 .

[33]  Simon Urbanek,et al.  Exploring the Use of Urban Greenspace through Cellular Network Activity , 2012 .

[34]  Yilin Zhao,et al.  Standardization of mobile phone positioning for 3G systems , 2002, IEEE Commun. Mag..

[35]  Latanya Sweeney,et al.  k-Anonymity: A Model for Protecting Privacy , 2002, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[36]  Sougata Mukherjea,et al.  Analyzing the Structure and Evolution of Massive Telecom Graphs , 2008, IEEE Transactions on Knowledge and Data Engineering.

[37]  Emiliano Miluzzo,et al.  A survey of mobile phone sensing , 2010, IEEE Communications Magazine.

[38]  John A. Quinn,et al.  Methodologies for Continuous Cellular Tower Data Analysis , 2009, Pervasive.

[39]  Rafael E. Banchs,et al.  Article in Press Pervasive and Mobile Computing ( ) – Pervasive and Mobile Computing Urban Cycles and Mobility Patterns: Exploring and Predicting Trends in a Bicycle-based Public Transport System , 2022 .

[40]  Henry A. Kautz,et al.  Finding your friends and following them to where you are , 2012, WSDM '12.

[41]  Vania Bogorny,et al.  A model for enriching trajectories with semantic geographical information , 2007, GIS.

[42]  Emil Jovanov,et al.  Medical Monitoring Applications for Wearable Computing , 2004, Comput. J..

[43]  Alex Pentland,et al.  Reality mining: sensing complex social systems , 2006, Personal and Ubiquitous Computing.

[44]  Brian D. O. Anderson,et al.  Wireless sensor network localization techniques , 2007, Comput. Networks.

[45]  Alexei Pozdnoukhov,et al.  Best Paper Award , 2011 .

[46]  Tristan Henderson,et al.  CRAWDAD: a community resource for archiving wireless data at Dartmouth , 2005, CCRV.

[47]  Ronan Farrell,et al.  Utilising mobile phone RSSI metric for human activity detection , 2009 .

[48]  Robert A. Johnston,et al.  COMPREHENSIVE REGIONAL MODELING FOR LONG-RANGE PLANNING: LINKING INTEGRATED URBAN MODELS AND GEOGRAPHIC INFORMATION SYSTEMS. IN: THE AUTOMOBILE , 2000 .

[49]  R. Hollands Will the real smart city please stand up? , 2008, The Routledge Companion to Smart Cities.

[50]  Yi Zhang,et al.  Pedestrian Safety Analysis in Mixed Traffic Conditions Using Video Data , 2012, IEEE Transactions on Intelligent Transportation Systems.

[51]  Rui Xu,et al.  Survey of clustering algorithms , 2005, IEEE Transactions on Neural Networks.

[52]  Ramón Cáceres,et al.  A Tale of One City: Using Cellular Network Data for Urban Planning , 2011, IEEE Pervasive Computing.

[53]  Prashant Krishnamurthy,et al.  Modeling of indoor positioning systems based on location fingerprinting , 2004, IEEE INFOCOM 2004.

[54]  Ricardo Ocañ-Riola Non-homogeneous Markov Processes for Biomedical Data Analysis , 2005 .

[55]  Jerry J Hajek,et al.  Forecasting Traffic Loads for Mechanistic–Empirical Pavement Design , 2011 .

[56]  Oliver C. Ibe,et al.  Markov processes for stochastic modeling , 2008 .

[57]  Ewa Niewiadomska-Szynkiewicz,et al.  Reconstruction of a social network graph from incomplete call detail records , 2011, 2011 International Conference on Computational Aspects of Social Networks (CASoN).

[58]  Jennifer Golbeck,et al.  Visualization of semantic metadata and ontologies , 2003, Proceedings on Seventh International Conference on Information Visualization, 2003. IV 2003..

[59]  J. Y. Yen,et al.  Finding the K Shortest Loopless Paths in a Network , 2007 .

[60]  Vanessa Frías-Martínez,et al.  An Agent-Based Model of Epidemic Spread Using Human Mobility and Social Network Information , 2011, 2011 IEEE Third Int'l Conference on Privacy, Security, Risk and Trust and 2011 IEEE Third Int'l Conference on Social Computing.

[61]  Richard W Lyles,et al.  U.S. National Household Travel Survey Used to Validate Exposure Estimates by the Quasi-Induced Exposure Technique , 2011 .

[62]  Margaret Martonosi,et al.  Human mobility modeling at metropolitan scales , 2012, MobiSys '12.

[63]  Rein Ahas,et al.  Mobile Positioning in Space–Time Behaviour Studies: Social Positioning Method Experiments in Estonia , 2007 .

[64]  Francesca Bignami Privacy and Law Enforcement in the European Union: The Data Retention Directive , 2011 .

[65]  Carlo Ratti,et al.  Human mobility prediction based on individual and collective geographical preferences , 2010, 13th International IEEE Conference on Intelligent Transportation Systems.

[66]  Sébastien Gambs,et al.  A comparative privacy analysis of geosocial networks , 2011, SPRINGL '11.

[67]  Carlo Ratti,et al.  Mobile Landscapes: Using Location Data from Cell Phones for Urban Analysis , 2006 .

[68]  Nathan Eagle,et al.  Community Computing: Comparisons between Rural and Urban Societies Using Mobile Phone Data , 2009, 2009 International Conference on Computational Science and Engineering.

[69]  Gergely V. Záruba,et al.  A Bayesian sampling approach to in-door localization of wireless devices using received signal strength indication , 2005, Third IEEE International Conference on Pervasive Computing and Communications.

[70]  F. Gustafsson,et al.  Mobile positioning using wireless networks: possibilities and fundamental limitations based on available wireless network measurements , 2005, IEEE Signal Processing Magazine.

[71]  David J. DeWitt,et al.  Incognito: efficient full-domain K-anonymity , 2005, SIGMOD '05.

[72]  Liang Liu,et al.  Estimating Origin-Destination Flows Using Mobile Phone Location Data , 2011, IEEE Pervasive Computing.

[73]  J. White,et al.  Extracting origin destination information from mobile phone data , 2002 .

[74]  Brendan T. O'Connor,et al.  From Tweets to Polls: Linking Text Sentiment to Public Opinion Time Series , 2010, ICWSM.

[75]  Tom M. Mitchell,et al.  Machine Learning and Data Mining , 2012 .

[76]  Youngbin Yim The State of Cellular Probes , 2003 .

[77]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[78]  Ryosuke Shibasaki,et al.  Activity-Aware Map: Identifying Human Daily Activity Pattern Using Mobile Phone Data , 2010, HBU.

[79]  Sergey Brin,et al.  The Anatomy of a Large-Scale Hypertextual Web Search Engine , 1998, Comput. Networks.

[80]  James A. Landay,et al.  The Mobile Sensing Platform: An Embedded Activity Recognition System , 2008, IEEE Pervasive Computing.

[81]  John A. Quinn,et al.  Location Segmentation, Inference and Prediction for Anticipatory Computing , 2009, AAAI Spring Symposium: Technosocial Predictive Analytics.

[82]  Carlo Ratti,et al.  Inferring Asymmetry of Inhabitant Flow using Call Detail Records , 2011 .

[83]  Ronan Farrell,et al.  Utilising Mobile Phone Billing Records for Travel Made Discovery , 2011 .

[84]  Mohan M. Trivedi,et al.  Learning trajectory patterns by clustering: Experimental studies and comparative evaluation , 2009, CVPR.

[85]  P. Nijkamp,et al.  Smart Cities in Europe , 2011 .

[86]  O. Järv,et al.  Using Mobile Positioning Data to Model Locations Meaningful to Users of Mobile Phones , 2010 .

[87]  Johan Wideberg,et al.  Deriving origin destination data from a mobile phone network , 2007 .

[88]  Henry A. Kautz,et al.  Learning and inferring transportation routines , 2004, Artif. Intell..

[89]  T. Dishongh,et al.  A Bluetooth-based minimum infrastructure home localisation system , 2008, 2008 IEEE International Symposium on Wireless Communication Systems.

[90]  Rein Ahas,et al.  Evaluating passive mobile positioning data for tourism surveys: An Estonian case study , 2008 .

[91]  Tieniu Tan,et al.  Comparison of Similarity Measures for Trajectory Clustering in Outdoor Surveillance Scenes , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[92]  Ronan Farrell,et al.  Extracting Localised Mobile Activity Patterns from Cumulative Mobile Spectrum RSSI , 2009 .

[93]  Imad Aad,et al.  The Mobile Data Challenge: Big Data for Mobile Computing Research , 2012 .

[94]  R. Shibasaki,et al.  An Implementation of Mobile Sensing for Large-Scale Urban Monitoring , 2008 .

[95]  Yan Wan,et al.  Mobile Customer Clustering Based on Call Detail Records for Marketing Campaigns , 2009, 2009 International Conference on Management and Service Science.

[96]  H.C. Kim,et al.  Development of novel algorithm and real-time monitoring ambulatory system using Bluetooth module for fall detection in the elderly , 2004, The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[97]  Umberto Spagnolini,et al.  Hidden Markov Models for Radio Localization in Mixed LOS/NLOS Conditions , 2007, IEEE Transactions on Signal Processing.

[98]  Kirsi Virrantaus,et al.  Space–time density of trajectories: exploring spatio-temporal patterns in movement data , 2010, Int. J. Geogr. Inf. Sci..

[99]  K.J.R. Liu,et al.  Signal processing techniques in network-aided positioning: a survey of state-of-the-art positioning designs , 2005, IEEE Signal Processing Magazine.

[100]  Zbigniew Smoreda,et al.  Urban Mobility: Velocity and Uncertainty in Mobile Phone Data , 2011, 2011 IEEE Third Int'l Conference on Privacy, Security, Risk and Trust and 2011 IEEE Third Int'l Conference on Social Computing.

[101]  Margaret Martonosi,et al.  Identifying Important Places in People's Lives from Cellular Network Data , 2011, Pervasive.

[102]  Amy Hurford,et al.  GPS Measurement Error Gives Rise to Spurious 180° Turning Angles and Strong Directional Biases in Animal Movement Data , 2009, PloS one.

[103]  Jian Pei,et al.  Sequence Data Mining , 2007, Advances in Database Systems.

[104]  Juha Korhonen,et al.  Introduction to 3G Mobile Communications , 2001 .

[105]  L. Kanuk,et al.  Mail Surveys and Response Rates: A Literature Review , 1975 .

[106]  A. Pozdnoukhov,et al.  Spatial structure and dynamics of urban communities , 2011 .

[107]  Albert-László Barabási,et al.  Understanding individual human mobility patterns , 2008, Nature.

[108]  Carlo Ratti,et al.  Real time Rome , 2006 .

[109]  T. Geisel,et al.  The scaling laws of human travel , 2006, Nature.

[110]  Michael Y. Hu,et al.  Are Consumer Survey Results Distorted? Systematic Impact of Behavioral Frequency and Duration on Survey Response Errors , 2000 .

[111]  Ramón Cáceres,et al.  Clustering Anonymized Mobile Call Detail Records to Find Usage Groups , 2011 .

[112]  A.H. Sayed,et al.  Network-based wireless location: challenges faced in developing techniques for accurate wireless location information , 2005, IEEE Signal Processing Magazine.

[113]  Albert-László Barabási,et al.  Limits of Predictability in Human Mobility , 2010, Science.

[114]  Mahmoud Naghshineh,et al.  Channel assignment schemes for cellular mobile telecommunication systems: A comprehensive survey , 1996 .

[115]  Ian F. Akyildiz,et al.  Wireless sensor networks: a survey , 2002, Comput. Networks.

[116]  Carlo Ratti,et al.  Mobile Landscapes: Graz in Real Time , 2007, Location Based Services and TeleCartography.

[117]  Jure Leskovec,et al.  Friendship and mobility: user movement in location-based social networks , 2011, KDD.

[118]  R. Bharat Rao,et al.  Evolution of mobile location-based services , 2003, CACM.

[119]  Xing Xie,et al.  Learning transportation mode from raw gps data for geographic applications on the web , 2008, WWW.

[120]  鄭宇庭 行銷硏究 : Marketing research , 2009 .

[121]  Chaoming Song,et al.  Modelling the scaling properties of human mobility , 2010, 1010.0436.

[122]  David Lazer,et al.  Mobile Phone Data for Inferring Social Network Structure , 2008 .

[123]  Jing Liu,et al.  Survey of Wireless Indoor Positioning Techniques and Systems , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[124]  Carlo Ratti,et al.  Real-Time Urban Monitoring Using Cell Phones: A Case Study in Rome , 2011, IEEE Transactions on Intelligent Transportation Systems.

[125]  Emiliano Miluzzo,et al.  BikeNet: A mobile sensing system for cyclist experience mapping , 2009, TOSN.

[126]  Ninghui Li,et al.  t-Closeness: Privacy Beyond k-Anonymity and l-Diversity , 2007, 2007 IEEE 23rd International Conference on Data Engineering.

[127]  Carlo Ratti,et al.  Transportation mode inference from anonymized and aggregated mobile phone call detail records , 2010, 13th International IEEE Conference on Intelligent Transportation Systems.

[128]  Gennady L. Andrienko,et al.  Spatial Generalization and Aggregation of Massive Movement Data , 2011, IEEE Transactions on Visualization and Computer Graphics.

[129]  Juha-Pekka Makela,et al.  Indoor geolocation science and technology , 2002, IEEE Commun. Mag..

[130]  Gennady Andrienko,et al.  A General Framework for Using Aggregation in Visual Exploration of Movement Data , 2010 .

[131]  Cecilia Mascolo,et al.  NextPlace: A Spatio-temporal Prediction Framework for Pervasive Systems , 2011, Pervasive.

[132]  Lenita M. Davis,et al.  Deriving and exploring behavior segments within a retail loyalty card program , 2006 .

[133]  Bettina Speckmann,et al.  Flow Map Layout via Spiral Trees , 2011, IEEE Transactions on Visualization and Computer Graphics.

[134]  Paul Schimek,et al.  Growth in motor vehicle ownership and use : evidence from the Nationwide Personal Transportation Survey , 1999 .

[135]  Marcos R. Vieira,et al.  Characterizing Dense Urban Areas from Mobile Phone-Call Data: Discovery and Social Dynamics , 2010, 2010 IEEE Second International Conference on Social Computing.

[136]  Brian Lee Smith,et al.  Probe Sampling Strategies for Traffic Monitoring Systems Based on Wireless Location Technology , 2007 .

[137]  R. Ferguson,et al.  Loyalty trends for the twenty‐first century , 2005 .

[138]  Hein Putter,et al.  The bootstrap: a tutorial , 2000 .

[139]  R. Ormondroyd,et al.  Comparison of methods of locating and tracking cellular mobiles , 1999 .

[140]  Josep Vidal,et al.  Kalman tracking for mobile location in NLOS situations , 2003, 14th IEEE Proceedings on Personal, Indoor and Mobile Radio Communications, 2003. PIMRC 2003..

[141]  Gavin McArdle,et al.  City-scale traffic simulation from digital footprints , 2012, UrbComp '12.

[142]  Anil K. Jain,et al.  A modified Hausdorff distance for object matching , 1994, Proceedings of 12th International Conference on Pattern Recognition.

[143]  Xia Wang,et al.  Actively learning to infer social ties , 2012, Data Mining and Knowledge Discovery.

[144]  Aleksandar Milenkovic,et al.  Wireless sensor networks for personal health monitoring: Issues and an implementation , 2006, Comput. Commun..

[145]  Carlo Ratti,et al.  Cellular Census: Explorations in Urban Data Collection , 2007, IEEE Pervasive Computing.

[146]  Shaojun Feng,et al.  Assisted GPS and its impact on navigation in intelligent transportation systems , 2002, Proceedings. The IEEE 5th International Conference on Intelligent Transportation Systems.

[147]  A. Urruela,et al.  Efficient mobile location from time measurements with unknown variances in dynamic scenarios , 2004, IEEE 5th Workshop on Signal Processing Advances in Wireless Communications, 2004..

[148]  F. Calabrese,et al.  Urban gravity: a model for inter-city telecommunication flows , 2009, 0905.0692.

[149]  Jeffrey G. Andrews,et al.  Fundamentals of Lte , 2010 .

[150]  Liang Liu,et al.  Understanding individual and collective mobility patterns from smart card records: A case study in Shenzhen , 2009, 2009 12th International IEEE Conference on Intelligent Transportation Systems.

[151]  Harvey J. Miller,et al.  Modelling accessibility using space-time prism concepts within geographical information systems , 1991, Int. J. Geogr. Inf. Sci..

[152]  Robert Weibel,et al.  Movement similarity assessment using symbolic representation of trajectories , 2012, Int. J. Geogr. Inf. Sci..

[153]  M. Dijst,et al.  Urban Form and Travel Behaviour: Micro-level Household Attributes and Residential Context , 2002 .

[154]  Yihong Yuan,et al.  Analyzing and geo-visualizing individual human mobility patterns using mobile call records , 2010, 2010 18th International Conference on Geoinformatics.

[155]  Charles M. Grinstead,et al.  Introduction to probability , 1999, Statistics for the Behavioural Sciences.

[156]  Henry Tirri,et al.  A Statistical Modeling Approach to Location Estimation , 2002, IEEE Trans. Mob. Comput..

[157]  R. Ahas,et al.  Location based services—new challenges for planning and public administration? , 2005 .

[158]  Hui Zang,et al.  Are call detail records biased for sampling human mobility? , 2012, MOCO.

[159]  Lukas Kencl,et al.  Inter-Call Mobility model: A spatio-temporal refinement of Call Data Records using a Gaussian mixture model , 2012, 2012 Proceedings IEEE INFOCOM.

[160]  R. Ahas,et al.  Seasonal tourism spaces in Estonia: Case study with mobile positioning data , 2007 .

[161]  Brian L. Mark,et al.  Robust mobility tracking for cellular networks , 2002, 2002 IEEE International Conference on Communications. Conference Proceedings. ICC 2002 (Cat. No.02CH37333).

[162]  Rein Ahas,et al.  Mobile Positioning in Sustainability Studies: The Social Positioning Method in Studying Commuter’s Activity Spaces in Tallinn , 2006 .

[163]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[164]  Etienne Huens,et al.  Data for Development: the D4D Challenge on Mobile Phone Data , 2012, ArXiv.

[165]  Chandra R. Bhat,et al.  Modeling the Influence of Family, Social Context, and Spatial Proximity on Use of Nonmotorized Transport Mode , 2011 .

[166]  Dietmar Bauer,et al.  Estimating origin-destination-matrices depending on the time of the day from high frequent pedestrian entry and exit counts , 2012 .

[167]  A-L Barabási,et al.  Structure and tie strengths in mobile communication networks , 2006, Proceedings of the National Academy of Sciences.

[168]  Yi-Ming Chen,et al.  Mobile location tracking with NLOS error mitigation , 2002, Global Telecommunications Conference, 2002. GLOBECOM '02. IEEE.

[169]  Rein Ahas,et al.  Innovation in destination marketing , 2011 .

[170]  Mari Ostendorf,et al.  From HMM's to segment models: a unified view of stochastic modeling for speech recognition , 1996, IEEE Trans. Speech Audio Process..

[171]  Rolf Wüstenhagen,et al.  Green Energy Market Development in Germany: Effective Public Policy and Emerging Customer Demand , 2006 .

[172]  Daniel Gatica-Perez,et al.  Mining large-scale smartphone data for personality studies , 2013, Personal and Ubiquitous Computing.

[173]  Jacob Ratkiewicz,et al.  Political Polarization on Twitter , 2011, ICWSM.

[174]  Vitaly Shmatikov,et al.  De-anonymizing Social Networks , 2009, 2009 30th IEEE Symposium on Security and Privacy.

[175]  Donna J. Cox,et al.  IntelliBadgeTM: Towards Providing Location-Aware Value-Added Services at Academic Conferences , 2003, UbiComp.

[176]  Antonio Lima,et al.  Interdependence and predictability of human mobility and social interactions , 2012, Pervasive Mob. Comput..

[177]  Yang Hao,et al.  Wireless body sensor networks for health-monitoring applications , 2008, Physiological measurement.

[178]  Daniel A. Keim,et al.  A framework for using self-organising maps to analyse spatio-temporal patterns, exemplified by analysis of mobile phone usage , 2010, J. Locat. Based Serv..

[179]  Stephen G. Kobourov,et al.  A tale of two cities , 2010, HotMobile '10.

[180]  Maike Buchin,et al.  An algorithmic framework for segmenting trajectories based on spatio-temporal criteria , 2010, GIS '10.

[181]  Gennady L. Andrienko,et al.  Discovering bits of place histories from people's activity traces , 2010, 2010 IEEE Symposium on Visual Analytics Science and Technology.

[182]  Hillel Bar-Gera,et al.  Evaluation of a Cellular Phone-Based System for Measurements of Traffic Speeds and Travel Times: A Case Study from Israel , 2007 .

[183]  Menno-Jan Kraak,et al.  The space - time cube revisited from a geovisualization perspective , 2003 .

[184]  Ashwin Machanavajjhala,et al.  l-Diversity: Privacy Beyond k-Anonymity , 2006, ICDE.

[185]  Carlo Ratti,et al.  Eigenplaces: Segmenting Space through Digital Signatures , 2010, IEEE Pervasive Computing.

[186]  Theodore S. Rappaport,et al.  Wireless Communications: Principles and Practice (2nd Edition) by , 2012 .

[187]  R. Hallowell The relationships of customer satisfaction, customer loyalty, and profitability: an empirical study , 1996 .

[188]  Petter Holme,et al.  Predictability of population displacement after the 2010 Haiti earthquake , 2012, Proceedings of the National Academy of Sciences.

[189]  Jim Harkin,et al.  Internal Location Based Services using Wireless Sensor Networks and RFID Technology , 2006 .

[190]  Gaetano Borriello,et al.  Location Systems for Ubiquitous Computing , 2001, Computer.

[191]  Stefan Rommer,et al.  SAE and the Evolved Packet Core: Driving the Mobile Broadband Revolution , 2009 .

[192]  Luis Miguel Romero Pérez,et al.  Traffic Flow Estimation Models Using Cellular Phone Data , 2012, IEEE Transactions on Intelligent Transportation Systems.

[193]  Ronan Farrell,et al.  Analysing Ireland's Social and Transport Networks using Sparse Cellular Network Data , 2011 .

[194]  S. Strogatz,et al.  Redrawing the Map of Great Britain from a Network of Human Interactions , 2010, PloS one.

[195]  Sébastien Gambs,et al.  Show me how you move and I will tell you who you are , 2010, SPRINGL '10.

[196]  Andres Kuusik,et al.  The ability of turism events to generate destination loyalty towards the country: an Estonian case study. Turismiürituste võime genereerida sihtkohalojaalsust riigi suhtes: Eesti juhtum , 2010 .

[197]  Petko Bakalov,et al.  Querying Spatio-temporal Patterns in Mobile Phone-Call Databases , 2010, 2010 Eleventh International Conference on Mobile Data Management.

[198]  Xia Liu,et al.  Pedestrian detection and tracking with night vision , 2005, IEEE Transactions on Intelligent Transportation Systems.

[199]  Geoff Rose,et al.  Mobile Phones as Traffic Probes: Practices, Prospects and Issues , 2006 .

[200]  L. Aday,et al.  Designing and conducting health surveys : a comprehensive guide , 2006 .

[201]  Ajay R. Mishra,et al.  Fundamentals of Cellular Network Planning and Optimisation: 2G/2.5G/3G... Evolution to 4G , 2004 .

[202]  Mohan M. Trivedi,et al.  A Survey of Vision-Based Trajectory Learning and Analysis for Surveillance , 2008, IEEE Transactions on Circuits and Systems for Video Technology.

[203]  R. Ahas,et al.  The Seasonal Variability of Population in Estonian Municipalities , 2010 .

[204]  Rein Ahas,et al.  Mobile Positioning Data in Tourism Studies and Monitoring: Case Study in Tartu, Estonia , 2007, ENTER.