Photoinduced charge carrier dynamics of Zn-porphyrin-TiO2 electrodes: the key role of charge recombination for solar cell performance.

Time resolved absorption spectroscopy has been used to study photoinduced electron injection and charge recombination in Zn-porphyrin sensitized nanostructured TiO(2) electrodes. The electron transfer dynamics is correlated to the performance of dye sensitized solar cells based on the same electrodes. We find that the dye/semiconductor binding can be described with a heterogeneous geometry where the Zn-porphyrin molecules are attached to the TiO(2) surface with a distribution of tilt angles. The binding angle determines the porphyrin-semiconductor electron transfer distance and charge transfer occurs through space, rather than through the bridge connecting the porphyrin to the surface. For short sensitization times (1 h), there is a direct correlation between solar cell efficiency and amplitude of the kinetic component due to long-lived conduction band electrons, once variations in light harvesting (surface coverage) have been taken into account. Long sensitization time (12 h) results in decreased solar cell efficiency because of decreased efficiency of electron injection.

[1]  V. Sundström,et al.  Influence of the electron-cation interaction on electron mobility in dye-sensitized ZnO and TiO2 nanocrystals: a study using ultrafast terahertz spectroscopy. , 2010, Physical review letters.

[2]  Gordon G. Wallace,et al.  Injection limitations in a series of porphyrin dye-sensitized solar cells , 2010 .

[3]  Petter Persson,et al.  Calculations of interfacial interactions in pyrene-Ipa rod sensitized nanostructured TiO2. , 2009, Dalton transactions.

[4]  Seunghun Eu,et al.  Effects of Porphyrin Substituents and Adsorption Conditions on Photovoltaic Properties of Porphyrin-Sensitized TiO2 Cells , 2009 .

[5]  Michael Grätzel,et al.  Recent advances in sensitized mesoscopic solar cells. , 2009, Accounts of chemical research.

[6]  S. Yoshikawa,et al.  Effects of Electrode Structure on Photoelectrochemical Properties of ZnO Electrodes Modified with Porphyrin-Fullerene Composite Layers with an Intervening Fullerene Monolayer , 2009 .

[7]  C. Yeh,et al.  Synthesis, Optical and Photovoltaic Properties of Porphyrin Dyes , 2009 .

[8]  Seigo Ito,et al.  Large pi-aromatic molecules as potential sensitizers for highly efficient dye-sensitized solar cells. , 2009, Accounts of chemical research.

[9]  M. Fischer,et al.  Metal-free organic dyes for dye-sensitized solar cells: from structure: property relationships to design rules. , 2009, Angewandte Chemie.

[10]  Krishnan Rajeshwar,et al.  Photoelectrochemical Behavior of Polychelate Porphyrin Chromophores and Titanium Dioxide Nanotube Arrays for Dye-Sensitized Solar Cells , 2009 .

[11]  Cheng-Wei Lee,et al.  Novel zinc porphyrin sensitizers for dye-sensitized solar cells: synthesis and spectral, electrochemical, and photovoltaic properties. , 2009, Chemistry.

[12]  T. Katoh,et al.  Synthesis of sterically hindered phthalocyanines and their applications to dye-sensitized solar cells. , 2008, Dalton transactions.

[13]  V. Sundström,et al.  Photoinduced interfacial electron injection in RuN3-TiO2 thin films: Resolving picosecond timescale injection from the triplet state of the protonated and deprotonated dyes , 2008 .

[14]  E. Galoppini,et al.  Zinc(II) tetraarylporphyrins anchored to TiO2, ZnO, and ZrO2 nanoparticle films through rigid-rod linkers. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[15]  Jun-Ho Yum,et al.  Molecular cosensitization for efficient panchromatic dye-sensitized solar cells. , 2007, Angewandte Chemie.

[16]  T. Umeyama,et al.  Hydrogen-Bonding Effects on Film Structure and Photoelectrochemical Properties of Porphyrin and Fullerene Composites on Nanostructured TiO2 Electrodes , 2007 .

[17]  T. Balaban,et al.  Photosensitization of TiO2 and SnO2 by Artificial Self-Assembling Mimics of the Natural Chlorosomal Bacteriochlorophylls , 2007 .

[18]  Olle Inganäs,et al.  Geminate charge recombination in alternating polyfluorene copolymer/fullerene blends. , 2007, Journal of the American Chemical Society.

[19]  Anders Hagfeldt,et al.  Tetrachelate porphyrin chromophores for metal oxide semiconductor sensitization: effect of the spacer length and anchoring group position. , 2007, Journal of the American Chemical Society.

[20]  M. Kawasaki,et al.  Effects of 5-Membered Heteroaromatic Spacers on Structures of Porphyrin Films and Photovoltaic Properties of Porphyrin-Sensitized TiO2 Cells , 2007 .

[21]  S. Haque,et al.  Photochemical energy conversion: from molecular dyads to solar cells. , 2006, Chemical communications.

[22]  Neil Robertson,et al.  Optimizing dyes for dye-sensitized solar cells. , 2006, Angewandte Chemie.

[23]  Nathan S Lewis,et al.  Chemical control of charge transfer and recombination at semiconductor photoelectrode surfaces. , 2005, Inorganic chemistry.

[24]  Emilio Palomares,et al.  Supermolecular control of charge transfer in dye-sensitized nanocrystalline TiO2 films: towards a quantitative structure-function relationship. , 2005, Angewandte Chemie.

[25]  Michael Grätzel,et al.  Rationale for kinetic heterogeneity of ultrafast light-induced electron transfer from Ru(II) complex sensitizers to nanocrystalline TiO2. , 2005, Journal of the American Chemical Society.

[26]  Qing Wang,et al.  Efficient light harvesting by using green Zn-porphyrin-sensitized nanocrystalline TiO2 films. , 2005, The journal of physical chemistry. B.

[27]  R. Mendelsohn,et al.  Excited State Electron Transfer from Ru(II) Polypyridyl Complexes Anchored to Nanocrystalline TiO2 through Rigid-Rod Linkers , 2004 .

[28]  S. Haque,et al.  State selective electron injection in non-aggregated titanium phthalocyanine sensitised nanocrystalline TiO2 films. , 2004, Chemical communications.

[29]  Elena Galoppini,et al.  Linkers for anchoring sensitizers to semiconductor nanoparticles , 2004 .

[30]  Arie Zaban,et al.  Core-shell nanoporous electrode for dye sensitized solar cells: the effect of shell characteristics on the electronic properties of the electrode , 2004 .

[31]  Nicholas J Long,et al.  Molecular control of recombination dynamics in dye-sensitized nanocrystalline TiO2 films: free energy vs distance dependence. , 2004, Journal of the American Chemical Society.

[32]  Prashant V. Kamat,et al.  C60 Cluster as an Electron Shuttle in a Ru(II)-Polypyridyl Sensitizer-Based Photochemical Solar Cell , 2004 .

[33]  Michael Gratzel,et al.  Supramolecular control of charge-transfer dynamics on dye-sensitized nanocrystalline TiO2 films. , 2004, Chemistry.

[34]  A. Nogueira,et al.  Sensitization of TiO(2) by supramolecules containing zinc porphyrins and ruthenium-polypyridyl complexes. , 2004, Inorganic chemistry.

[35]  J. E. Rogers,et al.  Observation and Interpretation of Annulated Porphyrins: Studies on the Photophysical Properties of meso-Tetraphenylmetalloporphyrins , 2003 .

[36]  S. Fukuzumi,et al.  Nanostructured assembly of porphyrin clusters for light energy conversion , 2003 .

[37]  David F. Watson,et al.  Insights into Dye-Sensitization of Planar TiO2: Evidence for Involvement of a Protonated Surface State , 2003 .

[38]  N. Lewis,et al.  Effects of bridging ligands on the current-potential behavior and interfacial kinetics of ruthenium-sensitized nanocrystalline TiO2 photoelectrodes , 2003 .

[39]  G. Meyer,et al.  Subpicosecond photoinduced charge injection from "molecular tripods" into mesoporous TiO2 over the distance of 24 angstroms. , 2003, Journal of the American Chemical Society.

[40]  Emilio Palomares,et al.  Control of charge recombination dynamics in dye sensitized solar cells by the use of conformally deposited metal oxide blocking layers. , 2003, Journal of the American Chemical Society.

[41]  David R. Klug,et al.  Electron injection kinetics for the nanocrystalline TiO2 films sensitised with the dye (Bu4N)2Ru(dcbpyH)2(NCS)2 , 2002 .

[42]  Jianjun He,et al.  Modified phthalocyanines for efficient near-IR sensitization of nanostructured TiO(2) electrode. , 2002, Journal of the American Chemical Society.

[43]  A. Barzykin,et al.  Mechanism of Charge Recombination in Dye-Sensitized Nanocrystalline Semiconductors: Random Flight Model , 2002 .

[44]  V. Sundström,et al.  Electron Transfer from the Singlet and Triplet Excited States of Ru(dcbpy)2(NCS)2 into Nanocrystalline TiO2 Thin Films , 2002 .

[45]  Jani Kallioinen,et al.  Photoinduced ultrafast dye-to-semiconductor electron injection from nonthermalized and thermalized donor states. , 2002, Journal of the American Chemical Society.

[46]  R. Buhrman,et al.  Ultrathin aluminum oxide tunnel barriers. , 2002, Physical review letters.

[47]  J. Kallioinen,et al.  Transient absorption studies of the Ru(dcbpy)2(NCS)2 excited state and the dye cation on nanocrystalline TiO2 film , 2001 .

[48]  T. Pascher Temperature and driving force dependence of the folding rate of reduced horse heart cytochrome c. , 2001, Biochemistry.

[49]  John B. Asbury,et al.  Ultrafast Electron Transfer Dynamics from Molecular Adsorbates to Semiconductor Nanocrystalline Thin Films , 2001 .

[50]  V. Sundström,et al.  Electron Injection and Recombination in Fluorescein 27-Sensitized TiO2 Thin Films , 2001 .

[51]  T. Lian,et al.  Bridge Length-Dependent Ultrafast Electron Transfer from Re Polypyridyl Complexes to Nanocrystalline TiO2 Thin Films Studied by Femtosecond Infrared Spectroscopy , 2000 .

[52]  Edwin J. Heilweil,et al.  Electron Injection, Recombination, and Halide Oxidation Dynamics at Dye-Sensitized Metal Oxide Interfaces , 2000 .

[53]  T. Lian,et al.  Ultrafast Excited-State Dynamics of Re(CO)3Cl(dcbpy) in Solution and on Nanocrystalline TiO2 and ZrO2 Thin Films , 2000 .

[54]  D. Klug,et al.  Electron injection and recombination in dye sensitized nanocrystalline titanium dioxide films: A comparison of ruthenium bipyridyl and porphyrin sensitizer dyes , 2000 .

[55]  G. Meyer,et al.  Diffusion-Limited Interfacial Electron Transfer with Large Apparent Driving Forces , 1999 .

[56]  John B. Asbury,et al.  Femtosecond IR Study of Excited-State Relaxation and Electron-Injection Dynamics of Ru(dcbpy)2(NCS)2 in Solution and on Nanocrystalline TiO2 and Al2O3 Thin Films , 1999 .

[57]  Michael Grätzel,et al.  Long-Lived Photoinduced Charge Separation and Redox-Type Photochromism on Mesoporous Oxide Films Sensitized by Molecular Dyads , 1999 .

[58]  V. Sundström,et al.  Dynamics of Electron Injection and Recombination of Dye-Sensitized TiO2 Particles , 1998 .

[59]  John B. Asbury,et al.  Dynamics of Electron Injection in Nanocrystalline Titanium Dioxide Films Sensitized with (Ru(4,4'-dicarboxy-2,2'-bipyridine)2(NCS)2) by Infrared Transient Absorption , 1998 .

[60]  V. Sundström,et al.  ULTRAFAST ELECTRON INJECTION AND RECOMBINATION DYNAMICS OF DYE SENSITISED TIO2 PARTICLES , 1998 .

[61]  U. Bach,et al.  Comment on \"Measurement of Ultrafast Photoinduced Electron Transfer from Chemically Anchored Ru-Dye Molecules into Empty Electronic States in a Colloidal Anatase TiO2 Film\" , 1998 .

[62]  Saif A. Haque,et al.  Charge Recombination Kinetics in Dye-Sensitized Nanocrystalline Titanium Dioxide Films under Externally Applied Bias , 1998 .

[63]  Michael Grätzel,et al.  Subpicosecond interfacial charge separation in dye-sensitized nanocrystalline titanium dioxide films , 1996 .

[64]  Vidmantas Gulbinas,et al.  Excited state dynamics of phthalocyanine films , 1996 .

[65]  Michael Grätzel,et al.  Observation of temperature independent heterogeneous electron transfer reactions in the inverted Marcus region , 1993 .

[66]  D. Fitzmaurice,et al.  Transient near-infrared spectroscopy of visible light sensitized oxidation of iodide at colloidal titania , 1991 .

[67]  Marc A. Anderson,et al.  Vectorial electron injection into transparent semiconductor membranes and electric field effects on the dynamics of light-induced charge separation , 1990 .

[68]  Louis E. Brus,et al.  Nucleation and Growth of CdSe on ZnS Quantum Crystallite Seeds and Vice Versa, in Inverse Micelle Media , 1990 .

[69]  V. Sundström,et al.  Excited state dynamics and photophysics of aggregated dye chromophores in solution , 1985 .

[70]  R. Marcus,et al.  Electron transfers in chemistry and biology , 1985 .

[71]  H. Gerischer,et al.  ELECTROCHEMICAL TECHNIQUES FOR THE STUDY OF PHOTOSENSITIZATION * , 1972 .

[72]  Rudolph A. Marcus,et al.  On the Theory of Oxidation‐Reduction Reactions Involving Electron Transfer. I , 1956 .

[73]  G. Meyer,et al.  Photodriven heterogeneous charge transfer with transition-metal compounds anchored to TiO2 semiconductor surfaces. , 2009, Chemical Society reviews.

[74]  Michael Grätzel,et al.  Photoelectrochemical cells , 2001, Nature.

[75]  David R. Klug,et al.  Parameters Influencing Charge Recombination Kinetics in Dye-Sensitized Nanocrystalline Titanium Dioxide Films , 2000 .

[76]  D. Klug,et al.  The Excitation Wavelength and Solvent Dependance of the Kinetics of Electron Injection in Ru(dcbpy)2(NCS)2 Sensitized Nanocrystalline TiO2 Films , 1999 .

[77]  Anders Hagfeldt,et al.  Light-Induced Redox Reactions in Nanocrystalline Systems , 1995 .

[78]  F. Willig,et al.  Reaction of excited dye molecules at electrodes. , 1976, Topics in current chemistry.