暂无分享,去创建一个
[1] Michael Ulbrich,et al. Semismooth Newton Methods for Operator Equations in Function Spaces , 2002, SIAM J. Optim..
[2] Michael Ulbrich,et al. Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces , 2011, MOS-SIAM Series on Optimization.
[3] Ralf Kornhuber,et al. Nonsmooth Newton Methods for Set-Valued Saddle Point Problems , 2009, SIAM J. Numer. Anal..
[4] M. Burger. Finite element approximation of elliptic partial differential equations on implicit surfaces , 2009 .
[5] J. Eells,et al. NONLINEAR ANALYSIS ON MANIFOLDS MONGE-AMPÈRE EQUATIONS (Grundlehren der mathematischen Wissenschaften, 252) , 1984 .
[6] J. Craggs. Applied Mathematical Sciences , 1973 .
[7] Emmanuel Hebey,et al. Nonlinear analysis on manifolds , 1999 .
[8] O. A. Ladyzhenskai︠a︡,et al. Linear and Quasi-linear Equations of Parabolic Type , 1995 .
[9] F. Tröltzsch. Optimale Steuerung partieller Differentialgleichungen , 2005 .
[10] Alan Demlow,et al. An Adaptive Finite Element Method for the Laplace-Beltrami Operator on Implicitly Defined Surfaces , 2007, SIAM J. Numer. Anal..
[11] More Generalised Discrete Gronwall Inequalities , 1985 .
[12] Michael Hinze,et al. A Variational Discretization Concept in Control Constrained Optimization: The Linear-Quadratic Case , 2005, Comput. Optim. Appl..
[13] Michael Hinze,et al. POD Model Order Reduction of Drift-Diffusion Equations in Electrical Networks , 2011 .
[14] G. M.,et al. Partial Differential Equations I , 2023, Applied Mathematical Sciences.
[15] Michael Taylor,et al. Partial Differential Equations I: Basic Theory , 1996 .
[16] M. Delfour,et al. Shape Analysis via Oriented Distance Functions , 1994 .
[17] K. Brown,et al. Graduate Texts in Mathematics , 1982 .
[18] Thierry Aubin,et al. Nonlinear analysis on manifolds, Monge-Ampère equations , 1982 .
[19] Gerhard Dziuk,et al. Runge–Kutta time discretization of parabolic differential equations on evolving surfaces , 2012 .
[20] Michael Hinze,et al. Hamburger Beiträge zur Angewandten Mathematik The semi-smooth Newton method for variationally discretized control constrained elliptic optimal control problems ; implementation , convergence and globalization , 2022 .
[21] Michael Hinze,et al. A Globalized Semi-smooth Newton Method for Variational Discretization of Control Constrained Elliptic Optimal Control Problems , 2012, Constrained Optimization and Optimal Control for Partial Differential Equations.
[22] G. E. Bredon. Topology and geometry , 1993 .
[23] J. Lions,et al. Problèmes aux limites non homogènes et applications , 1968 .
[24] Emmanuel Hebey. Nonlinear analysis on manifolds: Sobolev spaces and inequalities , 1999 .
[25] Charles M. Elliott,et al. Finite elements on evolving surfaces , 2007 .
[26] Charles M. Elliott,et al. L2-estimates for the evolving surface finite element method , 2012, Math. Comput..
[27] K. Kunisch,et al. Primal-Dual Strategy for Constrained Optimal Control Problems , 1999 .
[28] J. Lions,et al. Non-homogeneous boundary value problems and applications , 1972 .
[29] Alan Demlow,et al. Higher-Order Finite Element Methods and Pointwise Error Estimates for Elliptic Problems on Surfaces , 2009, SIAM J. Numer. Anal..
[30] Boris Vexler,et al. A Priori Error Estimates for Space-Time Finite Element Discretization of Parabolic Optimal Control Problems Part II: Problems with Control Constraints , 2008, SIAM J. Control. Optim..
[31] Boris Vexler,et al. A Priori Error Estimates for Space-Time Finite Element Discretization of Parabolic Optimal Control Problems , 2019, Constrained Optimization and Optimal Control for Partial Differential Equations.
[32] D. Gilbarg,et al. Elliptic Partial Differential Equa-tions of Second Order , 1977 .
[33] G. Dziuk. Finite Elements for the Beltrami operator on arbitrary surfaces , 1988 .
[34] Elon L. Lima. The Jordan-Brouwer separation theorem for smooth hypersurfaces , 1988 .
[35] Stefan Ulbrich,et al. Optimization with PDE Constraints , 2008, Mathematical modelling.
[36] M. Hinze,et al. Hamburger Beiträge zur Angewandten Mathematik Optimal Control of the Laplace-Beltrami operator on compact surfaces-concept and numerical treatment , 2011 .
[37] C. M. Elliott,et al. A Fully Discrete Evolving Surface Finite Element Method , 2012, SIAM J. Numer. Anal..
[38] RAJEN KUMAR SINHA,et al. Optimal Error Estimates for Linear Parabolic Problems with Discontinuous Coefficients , 2005, SIAM J. Numer. Anal..
[39] Kazufumi Ito,et al. The Primal-Dual Active Set Strategy as a Semismooth Newton Method , 2002, SIAM J. Optim..
[40] O. Ladyženskaja. Linear and Quasilinear Equations of Parabolic Type , 1968 .
[41] E. Christiansen,et al. Handbook of Numerical Analysis , 1996 .
[42] Martin Rumpf,et al. A Convergent Finite Volume Scheme for Diffusion on Evolving Surfaces , 2011, SIAM J. Numer. Anal..
[43] I. Ekeland,et al. Convex analysis and variational problems , 1976 .
[44] Carsten Gräser. Globalization of Nonsmooth Newton Methods for Optimal Control Problems , 2008 .
[45] José Barros-Neto,et al. Problèmes aux limites non homogènes , 1966 .
[46] M. Berger,et al. Differential Geometry: Manifolds, Curves, and Surfaces , 1987 .
[47] M. Pachter,et al. Optimal control of partial differential equations , 1980 .
[48] J. Lions. Optimal Control of Systems Governed by Partial Differential Equations , 1971 .