On control-constrained parabolic optimal control problems on evolving surfaces - theory and variational discretization

We investigate linear-quadratic parabolic optimal control problems on evolving material hypersurfaces. In addition, we present a globalized Newton method for elliptic optimal control problems on stationary surfaces. We consider parabolic state equations in their weak form and define unique weak solutions for the state equation under low regularity assumptions. In particular we allow for initial values y0 ∈ L2(Γ(0)). The idea is to introduce distributional material derivatives and a W(0,T)-like solution space. Both in the stationary and the instationary case each surface is approximated by a triangulation Γh on which a finite element scheme for the state equation is formulated. The approximation error of this discretization of the state equation decomposes into a finite element error, arising from the projection onto a finite dimensional Ansatz space, and a geometrical part which is due to the approximation of Γ by Γh. We prove convergence results for the parabolic equations under weak regularity assumptions. The state equations define linear control-to-state operators. Using these, we formulate control constrained optimal control problems along with their necessary optimality conditions where the adjoint state equations appear. The optimal control problems are subjected to variational discretization by replacing Γ and the state equation by their finite dimensional approximations. The variationally discretized problems are amenable to an implementable semismooth Newton algorithm. In both cases we prove convergence of the discretized optimal controls. In the elliptic case we also discuss in some detail the implementation of a globalized semismooth Newton algorithm for the control problem, involving a new merit function. In the parabolic setting a suitable scalar product is formulated in order to arrive at an easily computable discrete adjoint scheme. Our analytical findings are complemented with numerical examples. Wir untersuchen linear-quadratische Optimalsteuerungsprobleme auf sich bewegenden Flachen. Zusatzlich geben wir ein globalisiertes semiglattes Newtonverfahren fur elliptische Optimalsteuerungsprobleme auf stationaren Flachen an. Wir betrachten parabolische Zustandsgleichungen in schwacher Form. Wir definieren eindeutige Losungen der Zustandsgleichung unter geringen Regularitatsannahmen. Insbesondere berucksichtigen wir Anfangswerte mit niedriger Regularitat y0 ∈ L2(Γ(0)). Hierzu werden schwache Materialableitungen und ein W(0,T)-artiger Losungsraum eingefuhrt. Sowohl im parabolischen als auch im elliptischen Fall wird die Zustandsgleichung mittels eines Finite-Element Ansatzes auf Triangulierungen Γh der Flachen Γ diskretisiert. Der damit verbundene Approximationsfehler zerfallt in einen Finite-Element Anteil, der aus der Projektion auf einen endlichdimensionalen Ansatzraum resultiert, und einen geometrischen Anteil, der der Diskretisierung von Γ durch Γh Rechnung tragt. Wir beweisen Konvergenzaussagen fur die Diskretisierung der parabolischen Gleichung unter schwachen Regularitatsannahmen. Mit den Zustandsgleichungen lassen sich kontrollbeschrankte Optimalsteuerungsprobleme formulieren. Diese diskretisieren wir variationell, indem wir Γ und die Zustandsgleichung durch ihre jeweiligen diskreten Approximationen ersetzen. Das variationell diskretisierte Problem kann dann mittels eines semiglatten Newtonalgorithmus gelost werden. In beiden Fallen werden optimale Konvergenzordnung fur die Kontrollen bewiesen. Im elliptischen Fall geben wir zudem eine Globalisierung des Newtonverfahrens an, die auf einer neuen Bewertungsfunktion beruht. Im parabolischen Fall wird das L2-Skalarprodukt in geeigneter Weise diskretisiert, um einen implementierbaren adjungierten Losungsoperator zu erhalten. Die analytischen Betrachtungen werden durch numerische Beispiele erganzt.

[1]  Michael Ulbrich,et al.  Semismooth Newton Methods for Operator Equations in Function Spaces , 2002, SIAM J. Optim..

[2]  Michael Ulbrich,et al.  Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces , 2011, MOS-SIAM Series on Optimization.

[3]  Ralf Kornhuber,et al.  Nonsmooth Newton Methods for Set-Valued Saddle Point Problems , 2009, SIAM J. Numer. Anal..

[4]  M. Burger Finite element approximation of elliptic partial differential equations on implicit surfaces , 2009 .

[5]  J. Eells,et al.  NONLINEAR ANALYSIS ON MANIFOLDS MONGE-AMPÈRE EQUATIONS (Grundlehren der mathematischen Wissenschaften, 252) , 1984 .

[6]  J. Craggs Applied Mathematical Sciences , 1973 .

[7]  Emmanuel Hebey,et al.  Nonlinear analysis on manifolds , 1999 .

[8]  O. A. Ladyzhenskai︠a︡,et al.  Linear and Quasi-linear Equations of Parabolic Type , 1995 .

[9]  F. Tröltzsch Optimale Steuerung partieller Differentialgleichungen , 2005 .

[10]  Alan Demlow,et al.  An Adaptive Finite Element Method for the Laplace-Beltrami Operator on Implicitly Defined Surfaces , 2007, SIAM J. Numer. Anal..

[11]  More Generalised Discrete Gronwall Inequalities , 1985 .

[12]  Michael Hinze,et al.  A Variational Discretization Concept in Control Constrained Optimization: The Linear-Quadratic Case , 2005, Comput. Optim. Appl..

[13]  Michael Hinze,et al.  POD Model Order Reduction of Drift-Diffusion Equations in Electrical Networks , 2011 .

[14]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[15]  Michael Taylor,et al.  Partial Differential Equations I: Basic Theory , 1996 .

[16]  M. Delfour,et al.  Shape Analysis via Oriented Distance Functions , 1994 .

[17]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[18]  Thierry Aubin,et al.  Nonlinear analysis on manifolds, Monge-Ampère equations , 1982 .

[19]  Gerhard Dziuk,et al.  Runge–Kutta time discretization of parabolic differential equations on evolving surfaces , 2012 .

[20]  Michael Hinze,et al.  Hamburger Beiträge zur Angewandten Mathematik The semi-smooth Newton method for variationally discretized control constrained elliptic optimal control problems ; implementation , convergence and globalization , 2022 .

[21]  Michael Hinze,et al.  A Globalized Semi-smooth Newton Method for Variational Discretization of Control Constrained Elliptic Optimal Control Problems , 2012, Constrained Optimization and Optimal Control for Partial Differential Equations.

[22]  G. E. Bredon Topology and geometry , 1993 .

[23]  J. Lions,et al.  Problèmes aux limites non homogènes et applications , 1968 .

[24]  Emmanuel Hebey Nonlinear analysis on manifolds: Sobolev spaces and inequalities , 1999 .

[25]  Charles M. Elliott,et al.  Finite elements on evolving surfaces , 2007 .

[26]  Charles M. Elliott,et al.  L2-estimates for the evolving surface finite element method , 2012, Math. Comput..

[27]  K. Kunisch,et al.  Primal-Dual Strategy for Constrained Optimal Control Problems , 1999 .

[28]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[29]  Alan Demlow,et al.  Higher-Order Finite Element Methods and Pointwise Error Estimates for Elliptic Problems on Surfaces , 2009, SIAM J. Numer. Anal..

[30]  Boris Vexler,et al.  A Priori Error Estimates for Space-Time Finite Element Discretization of Parabolic Optimal Control Problems Part II: Problems with Control Constraints , 2008, SIAM J. Control. Optim..

[31]  Boris Vexler,et al.  A Priori Error Estimates for Space-Time Finite Element Discretization of Parabolic Optimal Control Problems , 2019, Constrained Optimization and Optimal Control for Partial Differential Equations.

[32]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[33]  G. Dziuk Finite Elements for the Beltrami operator on arbitrary surfaces , 1988 .

[34]  Elon L. Lima The Jordan-Brouwer separation theorem for smooth hypersurfaces , 1988 .

[35]  Stefan Ulbrich,et al.  Optimization with PDE Constraints , 2008, Mathematical modelling.

[36]  M. Hinze,et al.  Hamburger Beiträge zur Angewandten Mathematik Optimal Control of the Laplace-Beltrami operator on compact surfaces-concept and numerical treatment , 2011 .

[37]  C. M. Elliott,et al.  A Fully Discrete Evolving Surface Finite Element Method , 2012, SIAM J. Numer. Anal..

[38]  RAJEN KUMAR SINHA,et al.  Optimal Error Estimates for Linear Parabolic Problems with Discontinuous Coefficients , 2005, SIAM J. Numer. Anal..

[39]  Kazufumi Ito,et al.  The Primal-Dual Active Set Strategy as a Semismooth Newton Method , 2002, SIAM J. Optim..

[40]  O. Ladyženskaja Linear and Quasilinear Equations of Parabolic Type , 1968 .

[41]  E. Christiansen,et al.  Handbook of Numerical Analysis , 1996 .

[42]  Martin Rumpf,et al.  A Convergent Finite Volume Scheme for Diffusion on Evolving Surfaces , 2011, SIAM J. Numer. Anal..

[43]  I. Ekeland,et al.  Convex analysis and variational problems , 1976 .

[44]  Carsten Gräser Globalization of Nonsmooth Newton Methods for Optimal Control Problems , 2008 .

[45]  José Barros-Neto,et al.  Problèmes aux limites non homogènes , 1966 .

[46]  M. Berger,et al.  Differential Geometry: Manifolds, Curves, and Surfaces , 1987 .

[47]  M. Pachter,et al.  Optimal control of partial differential equations , 1980 .

[48]  J. Lions Optimal Control of Systems Governed by Partial Differential Equations , 1971 .