Discovering of association rules without a minimum support threshold - coherent rules discovery

.......................................................................... vii Table of

[1]  Wynne Hsu,et al.  Mining association rules with multiple minimum supports , 1999, KDD '99.

[2]  Yen-Liang Chen,et al.  Mining association rules with multiple minimum supports: a new mining algorithm and a support tuning mechanism , 2004, Decision Support Systems.

[3]  Alex Tze Hiang Sim,et al.  Importance of Negative Associations and Mining of Association Pairs , 2007, iiWAS.

[4]  Anthony K. H. Tung,et al.  Mining top-K covering rule groups for gene expression data , 2005, SIGMOD '05.

[5]  Tetsuya Murai,et al.  A Note on Conditional Logic and Association Rules , 2001, JSAI Workshops.

[6]  Geoffrey I. Webb Discovering significant rules , 2006, KDD '06.

[7]  Usama M. Fayyad,et al.  Knowledge Discovery in Databases: An Overview , 1997, ILP.

[8]  Ansaf Salleb-Aouissi,et al.  An Application of Association Rules Discovery to Geographic Information Systems , 2000, PKDD.

[9]  J. Hardin,et al.  Association rules and data mining in hospital infection control and public health surveillance. , 1998, Journal of the American Medical Informatics Association : JAMIA.

[10]  Byung-Do Kim,et al.  Market Basket Analysis , 2008 .

[11]  Petra Perner,et al.  Data Mining - Concepts and Techniques , 2002, Künstliche Intell..

[12]  Xiangjun Dong,et al.  Study of Positive and Negative Association Rules Based on Multi-confidence and Chi-Squared Test , 2006, ADMA.

[13]  Rajeev Motwani,et al.  Dynamic itemset counting and implication rules for market basket data , 1997, SIGMOD '97.

[14]  Dimitrios Gunopulos,et al.  Constraint-Based Rule Mining in Large, Dense Databases , 2004, Data Mining and Knowledge Discovery.

[15]  Jianhong Wu,et al.  Association Bundle - A New Pattern for Association Analysis , 2006, Sixth IEEE International Conference on Data Mining - Workshops (ICDMW'06).

[16]  Philip S. Yu,et al.  Scoring the Data Using Association Rules , 2003, Applied Intelligence.

[17]  Jeffrey F. Naughton,et al.  Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data , 1980, SIGMOD 2000.

[18]  Xingquan Zhu,et al.  Quantitative Association Rules , 2009, Encyclopedia of Database Systems.

[19]  Georgios C. Anagnostopoulos,et al.  Knowledge-Based Intelligent Information and Engineering Systems , 2003, Lecture Notes in Computer Science.

[20]  Ya-Han Hu,et al.  在多重支持度下有效率的挖掘與維護關聯規則; An Efficient Algorithm for Discovery and Maintenance of Frequent Patterns with Multiple Minimum Supports , 2003 .

[21]  F. Kviz,et al.  Interpreting Proportional Reduction in Error Measures as Percentage of Variation Explained , 1981 .

[22]  L.N. Alachaher,et al.  Mining Negative and Positive Influence Rules Using Kullback-Leibler Divergence , 2007, 2007 International Multi-Conference on Computing in the Global Information Technology (ICCGI'07).

[23]  Szymon Jaroszewicz,et al.  Interestingness of frequent itemsets using Bayesian networks as background knowledge , 2004, KDD.

[24]  Wynne Hsu,et al.  Analyzing the Subjective Interestingness of Association Rules , 2000, IEEE Intell. Syst..

[25]  Stamatios V. Kartalopoulos,et al.  Proceedings of the 12th WSEAS international conference on Computers , 2008 .

[26]  Keun Ho Ryu,et al.  Mining association rules on significant rare data using relative support , 2003, J. Syst. Softw..

[27]  Xindong Wu,et al.  Mining Both Positive and Negative Association Rules , 2002, ICML.

[28]  Chris Cornelis,et al.  Mining Positive and Negative Fuzzy Association Rules , 2004, KES.

[29]  Geoffrey I. Webb,et al.  Mining Negative Rules Using GRD , 2004, PAKDD.

[30]  Yanchun Zhang,et al.  Direct interesting rule generation , 2003, Third IEEE International Conference on Data Mining.

[31]  Hiep Xuan Huynh,et al.  Evaluating Interestingness Measures with Linear Correlation Graph , 2006, IEA/AIE.

[32]  Tobias Scheffer,et al.  Finding association rules that trade support optimally against confidence , 2001, Intell. Data Anal..

[33]  Rajeev Motwani,et al.  Beyond market baskets: generalizing association rules to correlations , 1997, SIGMOD '97.

[34]  Stéphane Bressan,et al.  Application of association rules mining to Named Entity Recognition and co-reference resolution for the Indonesian language , 2007, Int. J. Bus. Intell. Data Min..

[35]  Tushar Mani,et al.  Mining Negative Association Rules , 2012 .

[36]  Jiuyong Li,et al.  On optimal rule discovery , 2006, IEEE Transactions on Knowledge and Data Engineering.

[37]  Earl R. Babbie,et al.  Adventures in social research : data analysis using SPSS 11.0/11.5 for Windows , 2003 .

[38]  Ramakrishnan Srikant,et al.  Fast Algorithms for Mining Association Rules in Large Databases , 1994, VLDB.

[39]  David Taniar,et al.  Exception Rules Mining Based on Negative Association Rules , 2004, ICCSA.

[40]  Philip S. Yu,et al.  Top 10 algorithms in data mining , 2007, Knowledge and Information Systems.

[41]  Carla E. Brodley,et al.  KDD-Cup 2000 organizers' report: peeling the onion , 2000, SKDD.

[42]  Ke Wang,et al.  Growing decision trees on support-less association rules , 2000, KDD '00.

[43]  Wen-Yang Lin,et al.  A Confidence-Lift Support Specification for Interesting Associations Mining , 2002, PAKDD.

[44]  Sylvia Encheva,et al.  Application of association rules in education , 2006 .

[45]  U. M. Feyyad Data mining and knowledge discovery: making sense out of data , 1996 .

[46]  Bala Srinivasan,et al.  Mining infrequent and interesting rules from transaction records , 2008 .

[47]  Tetsuya Murai,et al.  Association rules and non-classical logics , 2002, Proceedings 26th Annual International Computer Software and Applications.

[48]  Jeffrey D. Ullman,et al.  A Survey of Association-Rule Mining , 2000, Discovery Science.

[49]  Rajeev Motwani,et al.  Beyond Market Baskets: Generalizing Association Rules to Dependence Rules , 1998, Data Mining and Knowledge Discovery.

[50]  Sudha Ram,et al.  Proceedings of the 1997 ACM SIGMOD international conference on Management of data , 1997, ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems.

[51]  Abraham Silberschatz,et al.  On Subjective Measures of Interestingness in Knowledge Discovery , 1995, KDD.

[52]  Shusaku Tsumoto,et al.  Proceedings of the Joint JSAI 2001 Workshop on New Frontiers in Artificial Intelligence , 2001 .

[53]  Jian Pei,et al.  Mining frequent patterns without candidate generation , 2000, SIGMOD '00.

[54]  T. Mcintosh,et al.  High Confidence Rule Mining for Microarray Analysis , 2007, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[55]  อนิรุธ สืบสิงห์,et al.  Data Mining Practical Machine Learning Tools and Techniques , 2014 .

[56]  Gregory Piatetsky-Shapiro,et al.  Discovery, Analysis, and Presentation of Strong Rules , 1991, Knowledge Discovery in Databases.

[57]  Tomasz Imielinski,et al.  Mining association rules between sets of items in large databases , 1993, SIGMOD Conference.

[58]  Geoffrey I. Webb OPUS: An Efficient Admissible Algorithm for Unordered Search , 1995, J. Artif. Intell. Res..

[59]  Philip S. Yu,et al.  A new framework for itemset generation , 1998, PODS '98.

[60]  Philip W. Goetz The New Encyclopaedia Britannica , 1991 .

[61]  Edward Omiecinski,et al.  Alternative Interest Measures for Mining Associations in Databases , 2003, IEEE Trans. Knowl. Data Eng..

[62]  Weihua Wu,et al.  Mining confident minimal rules with fixed-consequents , 2004, 16th IEEE International Conference on Tools with Artificial Intelligence.

[63]  Osmar R. Zaïane,et al.  Incremental mining of frequent patterns without candidate generation or support constraint , 2003, Seventh International Database Engineering and Applications Symposium, 2003. Proceedings..

[64]  Maria Indrawan,et al.  A threshold free implication rule mining , 2008, ICDM 2008.

[65]  Geert Wets,et al.  Using association rules for product assortment decisions: a case study , 1999, KDD '99.

[66]  Spiridon D. Likothanassis,et al.  Mutual Information Clustering for Efficient Mining of Fuzzy Association Rules with Application to Gene Expression Data Analysis , 2005, Int. J. Artif. Intell. Tools.

[67]  Philippe Lenca,et al.  A Clustering of Interestingness Measures , 2004, Discovery Science.

[68]  Régis Gras,et al.  Assessing rule interestingness with a probabilistic measure of deviation from equilibrium , 2005 .

[69]  Xindong Wu,et al.  Efficient mining of both positive and negative association rules , 2004, TOIS.

[70]  Jianning Dong,et al.  The application of association rule mining to remotely sensed data , 2000, SAC '00.

[71]  Bala Srinivasan,et al.  The importance of negative associations and the discovery of association rule pairs , 2008, Int. J. Bus. Intell. Data Min..

[72]  Naveen Kumar,et al.  Data Mining for Business Intelligence–Concepts, Techniques, and Applications in Microsoft Office Excel® with XLMiner® , 2012 .

[73]  Ramakrishnan Srikant,et al.  Mining quantitative association rules in large relational tables , 1996, SIGMOD '96.

[74]  Jaideep Srivastava,et al.  Selecting the right interestingness measure for association patterns , 2002, KDD.

[75]  Ming Zhao,et al.  Research on Application of Improved Association Rules Algorithm in Intelligent QA System , 2008, 2008 Second International Conference on Genetic and Evolutionary Computing.

[76]  Stefan Wrobel,et al.  An Algorithm for Multi-relational Discovery of Subgroups , 1997, PKDD.

[77]  Chava Nachmias,et al.  Social statistics for a diverse society , 2009 .

[78]  Xuan-Hiep Huynh,et al.  ARQAT : an exploratory analysis tool for interestingness measures , 2005 .

[79]  Patrick Meyer,et al.  Association Rule Interestingness Measures: Experimental and Theoretical Studies , 2007, Quality Measures in Data Mining.

[80]  Yun Sing Koh,et al.  Finding Non-Coincidental Sporadic Rules Using Apriori-Inverse , 2006, Int. J. Data Warehous. Min..

[81]  Howard J. Hamilton,et al.  Interestingness measures for data mining: A survey , 2006, CSUR.

[82]  Guangjun Song The Research of Association Rules Mining and Application in Intrusion Alerts Analysis , 2007, Second International Conference on Innovative Computing, Informatio and Control (ICICIC 2007).

[83]  Warren T. Jones Public health surveillance using association rules , 1998, SIGB.

[84]  Guoqing Chen,et al.  Mining Positive and Negative Association Rules from Large Databases , 2006, 2006 IEEE Conference on Cybernetics and Intelligent Systems.

[85]  Osmar R. Zaïane,et al.  Mining Positive and Negative Association Rules: An Approach for Confined Rules , 2004, PKDD.

[86]  J. Kalita,et al.  Horizontal vs . Vertical Partitioning in Association Rule Mining : A Comparison , 2003 .

[87]  Yun Sing Koh,et al.  Mining interesting imperfectly sporadic rules , 2006, Knowledge and Information Systems.

[88]  Min Gan,et al.  Extended Negative Association Rules and the Corresponding Mining Algorithm , 2005, ICMLC.

[89]  Stephen D. Bay,et al.  Detecting change in categorical data: mining contrast sets , 1999, KDD '99.

[90]  L. A. Goodman,et al.  Measures of association for cross classifications , 1979 .

[91]  Barrett R. Bryant,et al.  Proceedings of the 2000 ACM symposium on Applied computing - Volume 2 , 2000 .

[92]  Earl R. Babbie,et al.  Adventures in Social Research: Data Analysis Using SPSS for Windows/Book and Disk , 1993 .

[93]  Raymond Chi-Wing Wong,et al.  Data Mining for Inventory Item Selection with Cross-Selling Considerations , 2005, Data Mining and Knowledge Discovery.

[94]  Yue-Shi Lee,et al.  Mining Interesting Association Rules: A Data Mining Language , 2002, PAKDD.

[95]  Geoffrey I. Webb,et al.  K-Optimal Rule Discovery , 2005, Data Mining and Knowledge Discovery.

[96]  Tetsuya Murai,et al.  Association Rules and Dempster-Shafer Theory of Evidence , 2003, Discovery Science.

[97]  Shichao Zhang,et al.  Association Rule Mining: Models and Algorithms , 2002 .

[98]  Yun Sing Koh,et al.  Finding Sporadic Rules Using Apriori-Inverse , 2005, PAKDD.

[99]  Jörg Flum,et al.  Mathematical logic (2. ed.) , 1994, Undergraduate texts in mathematics.

[100]  Jiawei Han,et al.  Mining top-k frequent closed patterns without minimum support , 2002, 2002 IEEE International Conference on Data Mining, 2002. Proceedings..

[101]  N. Gogtay,et al.  Measures of Association. , 2016, The Journal of the Association of Physicians of India.