Nanolithography with an atomic force microscope by means of vector-scan controlled dynamic plowing

We present a nanolithography technique based on an atomic force microscope. A thin resist layer on the sample surface is plastically indented by a vibrating tip. Controlling of the vibration amplitude and tip movement enables one to plow a narrow furrow along line segments of arbitrary length and direction. Different line segments which form a complex pattern can be plowed at a scan speed up to 5 μm/s. The geometric distortion of the resist pattern is less than 50 nm, where at scan speed in excess of 1 μm/s an interrupt of at least 10 ms is necessary between the line segments. The minimum offset error in positioning a pattern with respect to existing features is less than 4% of the scanning field. The patterns are transferred into SiO2, Si, GaAs, Ti, and Au by wet-chemical etching. Minimum linewidth is 25 nm in 1.5 nm oxide layers, 75 nm in 10 nm Ti film and 40 nm in 10 nm Au. On semiconductor surfaces smooth and perfectly shaped V grooves of 55 nm width are obtained.

[1]  C. Schönenberger,et al.  Fabrication of metallic nanowires with a scanning tunneling microscope , 1995 .

[2]  P. McMarr,et al.  Fabrication of silicon nanostructures with a scanning tunneling microscope , 1993 .

[3]  W. Unertl,et al.  Submicrometer modification of polymer surfaces with a surface force microscope , 1992 .

[4]  D. Shaw,et al.  Localized GaAs Etching with Acidic Hydrogen Peroxide Solutions , 1981 .

[5]  D. Estève,et al.  Lift‐off lithography using an atomic force microscope , 1996 .

[6]  M. Rooks,et al.  Electron beam nanofabrication with self-assembled monolayers of alkylthiols and alkylsiloxanes , 1995 .

[7]  Hyongsok T. Soh,et al.  Fabrication of 0.1 um metal oxide semiconductor field-effect transistors with the atomic force microscope , 1995 .

[8]  Martin Holland,et al.  Semiconductor quantum point contact fabricated by lithography with an atomic force microscope , 1997 .

[9]  D. L. Kendall On etching very narrow grooves in silicon , 1975 .

[10]  Calvin F. Quate,et al.  Atomic force microscope lithography using amorphous silicon as a resist and advances in parallel operation , 1995 .

[11]  M. Otsubo,et al.  Preferential Etching of GaAs Through Photoresist Masks , 1976 .

[12]  M. Hoshi,et al.  Application of STM Nanometer-Size Oxidation Process to Planar-Type MIM Diode , 1995 .

[13]  P. McMarr,et al.  AFM-based fabrication of free-standing Si nanostructures , 1996 .

[14]  Eric S. Snow,et al.  Single‐atom point contact devices fabricated with an atomic force microscope , 1996 .

[15]  Christie R. K. Marrian,et al.  Technology of proximal probe lithography , 1993 .

[16]  Christie R. K. Marrian,et al.  Low voltage electron beam lithography in self‐assembled ultrathin films with the scanning tunneling microscope , 1994 .

[17]  T. Hattori,et al.  Fabrication of nanometer‐scale structures using atomic force microscope with conducting probe , 1994 .

[18]  I. Suemune,et al.  Atomic force microscope lithography on carbonaceous films deposited by electron-beam irradiation , 1998 .

[19]  P. T. Tang,et al.  New approaches to atomic force microscope lithography on silicon , 1997 .

[20]  E. Snow,et al.  Nanofabrication with proximal probes , 1996, Proc. IEEE.

[21]  D. Allee,et al.  Ambient scanning tunneling lithography of Langmuir–Blodgett and self‐assembled monolayers , 1995 .

[22]  E. Snow,et al.  Si nanostructures fabricated by anodic oxidation with an atomic force microscope and etching with an electron cyclotron resonance source , 1995 .

[23]  Roger Fabian W. Pease,et al.  Lift‐off metallization using poly(methyl methacrylate) exposed with a scanning tunneling microscope , 1988 .

[24]  E. Dobisz,et al.  Sub‐30 nm lithography in a negative electron beam resist with a vacuum scanning tunneling microscope , 1991 .

[25]  R. Pease,et al.  Exposure of ultrathin polymer resists with the scanning tunneling microscope , 1989 .

[26]  J. Lyding UHV STM nanofabrication: progress, technology spin-offs, and challenges , 1997, Proc. IEEE.

[27]  J. Lyding,et al.  Nanoscale oxide patterns on Si(100) surfaces , 1995 .

[28]  Sam F. Y. Li,et al.  Submicrometer lithography of a silicon substrate by machining of photoresist using atomic force microscopy followed by wet chemical etching , 1997 .

[29]  Michael T. Postek,et al.  Modification of hydrogen-passivated silicon by a scanning tunneling microscope operating in air , 1990 .

[30]  Eric S. Snow,et al.  Fabrication of nanometer‐scale side‐gated silicon field effect transistors with an atomic force microscope , 1995 .

[31]  L. Ley,et al.  Nanometer‐scale field‐induced oxidation of Si(111):H by a conducting‐probe scanning force microscope: Doping dependence and kinetics , 1995 .

[32]  Roger Fabian W. Pease,et al.  Imaging and modification of polymers by scanning tunneling and atomic force microscopy , 1988 .

[33]  Khaldoon Abugharbieh,et al.  25 nm chromium oxide lines by scanning tunneling lithography in air , 1994 .

[34]  Roger Fabian W. Pease,et al.  Scanning tunneling microscope as a micromechanical tool , 1987 .

[35]  Kang L. Wang,et al.  Nanometer‐structure writing on Si(100) surfaces using a non‐contact‐mode atomic force microscope , 1994 .

[36]  D. Allee,et al.  Nanometer scale patterning of a monolayer Langmuir–Blodgett film with a scanning tunneling microscope in air , 1993 .

[37]  A. Moser,et al.  The atomic force microscope used as a powerful tool for machining surfaces , 1992 .

[38]  John A. Dagata,et al.  Electron‐beam lithography with the scanning tunneling microscope , 1992 .

[39]  John R. Tucker,et al.  Nanoscale patterning and oxidation of H‐passivated Si(100)‐2×1 surfaces with an ultrahigh vacuum scanning tunneling microscope , 1994 .

[40]  Shin-ichi Yamamoto,et al.  Nanometer modifications of non-conductive materials using resist-films by atomic force microscopy , 1995 .

[41]  Lydia L. Sohn,et al.  Fabrication of nanostructures using atomic‐force‐microscope‐based lithography , 1995 .

[42]  R. Wiesendanger Scanning Probe Microscopy and Spectroscopy: Contents , 1994 .

[43]  The nanometer age: Challenge and chance , 1995 .

[44]  L. Stockman,et al.  Submicrometer lithographic patterning of thin gold films with a scanning tunneling microscope , 1993 .

[45]  Hiroshi Masuhara,et al.  Tip‐induced anodization of titanium surfaces by scanning tunneling microscopy: A humidity effect on nanolithography , 1993 .

[46]  H. Seggern,et al.  Scanning tunneling microscopy based lithography employing amorphous hydrogenated carbon as a high resolution resist mask , 1995 .

[47]  E. Snow,et al.  Fabrication of Si nanostructures with an atomic force microscope , 1994 .

[48]  Hiroshi Masuhara,et al.  Scanning tunneling microscope tip‐induced anodization of titanium: Characterization of the modified surface and application to the metal resist process for nanolithography , 1994 .

[49]  Brian R. Bennett,et al.  Nanostructure patterns written in III–V semiconductors by an atomic force microscope , 1997 .

[50]  M. Fujihira,et al.  Atomic force microscopy and friction force microscopy of Langmuir–Blodgett films for microlithography , 1994 .

[51]  O. Tabata,et al.  Anisotropic etching of silicon in TMAH solutions , 1992 .

[52]  Kazuhiko Matsumoto,et al.  Room temperature operation of a single electron transistor made by the scanning tunneling microscope nanooxidation process for the TiOx/Ti system , 1996 .

[53]  J. Kotthaus,et al.  Sharpened electron beam deposited tips for high resolution atomic force microscope lithography and imaging , 1995 .

[54]  C. V. Haesendonck,et al.  Nanolithographic patterning of metal films with a scanning tunnelling microscope , 1994 .

[55]  Roger Fabian W. Pease,et al.  Lithography with the scanning tunneling microscope , 1986 .

[56]  Abdullah Atalar,et al.  Hybrid atomic force/scanning tunneling lithography , 1997 .

[57]  T. Hattori,et al.  Modification of Silicon Surface Using Atomic Force Microscope with Conducting Probe , 1993 .

[58]  R. Pease,et al.  Exposure of calcium fluoride resist with the scanning tunneling microscope , 1987 .

[59]  Nanofabrication of titanium surface by tip-induced anodization in scanning tunneling microscopy , 1993 .

[60]  J. Lyding,et al.  Nanometer scale patterning and oxidation of silicon surfaces with an ultrahigh vacuum scanning tunneling microscope , 1994 .

[61]  Fabrication of 15 nm wide trenches in Si by vacuum scanning tunneling microscope lithography of an organosilane self-assembled film and reactive ion etching , 1996 .

[62]  U. Kunze,et al.  SiO2and Si nanoscale patterning with an atomic force microscope , 1998 .

[63]  C. Schönenberger,et al.  Nanometer lithography on silicon and hydrogenated amorphous silicon with low-energy electrons , 1995 .

[64]  L. Ley,et al.  Nanometer‐scale modification of the tribological properties of Si(100) by scanning force microscope , 1995 .

[65]  Yasoo Harada,et al.  Preferential Etching and Etched Profile of GaAs , 1971 .

[66]  I. Suemune,et al.  Atomic force microscope nanolithography on SiO2/semiconductor surfaces , 1997 .

[67]  John Alexander,et al.  Nanometer-scale lithography using the atomic force microscope , 1992 .

[68]  David R. Allee,et al.  Selective area oxidation of silicon with a scanning force microscope , 1993 .

[69]  M. Ishii,et al.  Control of Current in 2DEG Channel by Oxide Wire Formed Using AFM , 1995 .

[70]  Fabio Beltram,et al.  Fabrication of hybrid superconductor–semiconductor nanostructures by integrated ultraviolet-atomic force microscope lithography , 1997 .

[71]  Kang L. Wang,et al.  NANOFABRICATION OF THIN CHROMIUM FILM DEPOSITED ON SI(100) SURFACES BY TIP INDUCED ANODIZATION IN ATOMIC FORCE MICROSCOPY , 1995 .

[72]  D. Allee,et al.  Fabrication of Cr nanostructures with the scanning tunnelling microscope , 1997 .

[73]  Martin Holland,et al.  Nanolithography with an atomic force microscope for integrated fabrication of quantum electronic devices , 1994 .

[74]  Christie R. K. Marrian,et al.  Low‐voltage electron beam lithography with a scanning tunneling microscope , 1990 .

[75]  Calvin F. Quate,et al.  NANOMETER SCALE LITHOGRAPHY AT HIGH SCANNING SPEEDS WITH THE ATOMIC FORCE MICROSCOPE USING SPIN ON GLASS , 1995 .

[76]  Kang L. Wang,et al.  Nanometer scale patterning of silicon (100) surfaces by an atomic force microscope operating in air , 1994 .