Tunable Pinning of Burst Waves in Extended Systems with Discrete Sources

We study the dynamics of waves in a system of diffusively coupled discrete nonlinear sources. We show that the system exhibits burst waves which are periodic in a traveling-wave reference frame. We demonstrate that the burst waves are pinned if the diffusive coupling is below a critical value. When the coupling crosses the critical value the system undergoes a depinning instability via a saddle-node bifurcation, and the wave begins to move. We obtain the universal scaling for the mean wave velocity just above threshold. {copyright} {ital 1998} {ital The American Physical Society}