Phase-Space Volume Based Control of Semibatch Reactors

We present and apply a control methodology using the divergence of the system as a goal function to control semibatch chemical reactors and show how the process operation may be optimized by only measuring the reactor and jacket temperatures. The implementation of the approach is also demonstrated using phase-space reconstruction techniques. This new control methodology offers a complementary approach to more traditional techniques and it can be easily extended to other industrial installations and processes.

[1]  Fernanda Strozzi,et al.  On-Line Runaway Detection in Batch Reactors Using Chaos Theory Techniques. , 1999 .

[2]  E. Molga,et al.  The FIRES project: Experimental study of thermal runaway due to agitation problems during toluene nitration , 1993 .

[3]  Eugeniusz Molga,et al.  CFD modelling and divergence criterion for safety of chemical reactors , 2005 .

[4]  Eugeniusz Molga,et al.  Safety and Runaway Prevention in Batch and Semibatch Reactors—A Review , 2006 .

[5]  Eugeniusz Molga,et al.  Runaway prevention in liquid-phase homogeneous semibatch reactors , 2007 .

[6]  J. Rawlings,et al.  Feedback control of chemical processes using on-line optimization techniques , 1990 .

[7]  Francis J. Doyle,et al.  Multi-rate model predictive control of particle size distribution in a semibatch emulsion copolymerization reactor , 2008 .

[8]  Robin Smith,et al.  Design and optimisation of batch and semi-batch reactors , 2004 .

[9]  James P. Crutchfield,et al.  Geometry from a Time Series , 1980 .

[10]  Fernanda Strozzi,et al.  A general method for assessing the thermal stability of batch chemical reactors by sensitivity calculation based on Lyapunov exponents , 1994 .

[11]  Rein Luus,et al.  Towards practical optimal control of batch reactors , 1999 .

[12]  Y. Arkun,et al.  Estimation and model predictive control of non-linear batch processes using linear parameter varying models , 1999 .

[13]  G. Defaye,et al.  Software sensor based control of exothermic batch reactors , 1996 .

[14]  Renato Rota,et al.  Thermally safe operation of liquid–liquid semibatch reactors Part II: Single diffusion controlled reactions with arbitrary reaction order , 2005 .

[15]  V. Arnold,et al.  Ordinary Differential Equations , 1973 .

[16]  L. Biegler An overview of simultaneous strategies for dynamic optimization , 2007 .

[17]  Giuseppe Maschio,et al.  Sensitivity Analysis in Polymerization Reactions Using the Divergence Criterion , 2004 .

[18]  Dominique Bonvin,et al.  Measurement-based Optimization of Batch Processes: Meeting Terminal Constraints On-line via Trajectory Following , 2008 .

[19]  Giuseppe Maschio,et al.  A general criterion to define runaway limits in chemical reactors , 2003 .

[20]  F. Strozzi,et al.  Recurrence quantification based Liapunov exponents for monitoring divergence in experimental data , 2002 .

[21]  Zoltan K. Nagy,et al.  Evaluation study of an efficient output feedback nonlinear model predictive control for temperature tracking in an industrial batch reactor , 2007 .

[22]  J. Douglas Faires,et al.  Numerical Analysis , 1981 .

[23]  Thomas Schreiber,et al.  FAST NONLINEAR PROJECTIVE FILTERING IN A DATA STREAM , 1998 .

[24]  Wolfgang Marquardt,et al.  A Model Predictive Control Scheme for Safe and Optimal Operation of Exothermic Semi-Batch Reactors , 1998 .

[25]  J. Z. Comenges Divergence as a Goal Function for Control and On-Line Optimization (R&D Note) , 2005 .

[26]  F. Strozzi,et al.  Time-Step Volume-Preserving Control of Chemical Reactors , 2007 .

[27]  Luis Puigjaner,et al.  On-line process optimization: parameter tuning for the real time evolution (RTE) approach , 2004, Comput. Chem. Eng..

[28]  J. M. Zaldivar,et al.  Development of a mathematical model and a simulator for the analysis and optimisation of batch reactors: Experimental model characterisation using a reaction calorimeter☆ , 1996 .

[29]  Schreiber,et al.  Noise reduction in chaotic time-series data: A survey of common methods. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[30]  Fernanda Strozzi,et al.  A comparative analysis between temperature and pressure measurements for early detection of runaway initiation , 2004 .

[31]  Jyh-Shyong Chang,et al.  Optimization and Control of Semibatch Reactors , 1995 .

[32]  Hua Wu,et al.  Parametric sensitivity in chemical systems , 1999 .

[33]  Michel Cabassud,et al.  A new strategy for temperature control of batch reactors: experimental application , 1999 .

[34]  Eugeniusz Molga,et al.  No more runaways in fine chemical reactors , 2004 .

[35]  Fernanda Strozzi,et al.  Generalized Criteria for Boundary Safe Conditions in Semi-Batch Processes: Simulated Analysis and Experimental Results. , 1998 .

[36]  Lorenz T. Biegler,et al.  Simultaneous dynamic optimization strategies: Recent advances and challenges , 2006, Comput. Chem. Eng..

[37]  Joseph P. Zbilut,et al.  On-line runaway detection in isoperibolic batch and semibatch reactors using the divergence criterion , 2004, Comput. Chem. Eng..

[38]  Eugeniusz Molga,et al.  CFD simulation of accidents in industrial batch stirred tank reactors , 2007 .

[39]  Victor M. Zavala,et al.  Dynamic optimization of a semi-batch reactor for polyurethane production , 2005 .

[40]  J. M. Zaldívar,et al.  Runaway Detection in a Pilot-Plant Facility , 2004 .

[41]  Joseph P. Zbilut,et al.  Early warning detection of runaway initiation using non-linear approaches , 2005 .

[42]  Igor Škrjanc,et al.  Self-adaptive supervisory predictive functional control of a hybrid semi-batch reactor with constraints , 2008 .

[43]  K. Roel Westerterp,et al.  Thermally Safe Operation of a Semibatch Reactor for Liquid-Liquid Reactions - Fast Reactions , 1991 .

[44]  Klaas R. Westerterp,et al.  Thermally safe operation of a semibatch reactor for liquid-liquid reactions. Slow reactions , 1990 .