Design hyetograph analysis with 3-copula function
暂无分享,去创建一个
[1] D. Veneziano,et al. Best linear unbiased design hyetograph , 1999 .
[2] C. De Michele,et al. Analytical calculation of storm volume statistics involving Pareto‐like intensity‐duration marginals , 2004 .
[3] Bill Ravens,et al. An Introduction to Copulas , 2000, Technometrics.
[4] Demetris Koutsoyiannis,et al. A SIMPLE STOCHASTIC RAINFALL DISAGGREGATION SCHEME FOR URBAN DRAINAGE MODELLING , 2000 .
[5] C. Genest,et al. A semiparametric estimation procedure of dependence parameters in multivariate families of distributions , 1995 .
[6] Vijay P. Singh,et al. Derivation of bivariate probability density functions with exponential marginals , 1991 .
[7] Alan J. Lee,et al. Generating Random Binary Deviates Having Fixed Marginal Distributions and Specified Degrees of Association , 1993 .
[8] Satish Chandra,et al. Multivariate modeling of flood flows , 1998 .
[9] Sheng Yue,et al. The Gumbel logistic model for representing a multivariate storm event , 2000 .
[10] Francisco Nunes Correia,et al. Multivariate Partial Duration Series in Flood Risk Analysis , 1987 .
[11] Emiliano A. Valdez,et al. Understanding Relationships Using Copulas , 1998 .
[12] B. Bobée,et al. Multivariate hydrological frequency analysis using copulas , 2004 .
[13] Taha B. M. J. Ouarda,et al. The Gumbel mixed model for flood frequency analysis , 1999 .
[14] Joachim Weickert,et al. Scale-Space Theories in Computer Vision , 1999, Lecture Notes in Computer Science.
[15] Bruno Rémillard,et al. On Kendall's Process , 1996 .
[16] E. Gumbel. Bivariate Exponential Distributions , 1960 .
[17] Clint J. Keifer,et al. Synthetic Storm Pattern for Drainage Design , 1957 .
[18] P. Embrechts,et al. Risk Management: Correlation and Dependence in Risk Management: Properties and Pitfalls , 2002 .
[19] H. Joe. Multivariate models and dependence concepts , 1998 .
[20] B. Sackl,et al. A Bivariate Flood Model and Its Application , 1987 .
[21] Ian Cordery,et al. Rainfall Temporal Patterns for Design Floods , 1975 .
[22] P. Embrechts,et al. Correlation: Pitfalls and Alternatives , 1999 .
[23] C. Genest,et al. Statistical Inference Procedures for Bivariate Archimedean Copulas , 1993 .
[24] M. Sklar. Fonctions de repartition a n dimensions et leurs marges , 1959 .
[25] P. Embrechts,et al. Chapter 8 – Modelling Dependence with Copulas and Applications to Risk Management , 2003 .
[26] Gianfranco Becciu,et al. Bivariate exponential model applied to intensities and durations of extreme rainfall , 1994 .
[27] C. De Michele,et al. A Generalized Pareto intensity‐duration model of storm rainfall exploiting 2‐Copulas , 2003 .
[28] 農業土木学会応用水文研究部会,et al. 応用水文 = Applied hydrology , 1991 .
[29] Eric Bouyé,et al. Copulas for Finance - A Reading Guide and Some Applications , 2000 .
[30] E. J. Gumbel,et al. Some Analytical Properties of Bivariate Extremal Distributions , 1967 .
[31] Demetris Koutsoyiannis,et al. A scaling model of a storm hyetograph , 1993 .
[32] Sheng Yue,et al. The Gumbel Mixed Model Applied to Storm Frequency Analysis , 2000 .
[33] C. Genest,et al. The Joy of Copulas: Bivariate Distributions with Uniform Marginals , 1986 .
[34] Sheng Yue,et al. Joint probability distribution of annual maximum storm peaks and amounts as represented by daily rainfalls , 2000 .
[35] C. Kimberling. A probabilistic interpretation of complete monotonicity , 1974 .