On the depth spectrum of repeated-root constacyclic codes over finite chain rings
暂无分享,去创建一个
[1] J. Wolfman. Negacyclic and cyclic codes over Z/sub 4/ , 1999 .
[2] Victor K.-W. Wei,et al. On the depth distribution of linear codes , 2000, IEEE Trans. Inf. Theory.
[3] Tuvi Etzion. The depth distribution-a new characterization for linear codes , 1997, IEEE Trans. Inf. Theory.
[4] Thomas Blackford,et al. Negacyclic codes over Z4 of even length , 2003, IEEE Trans. Inf. Theory.
[5] Graham H. Norton,et al. On the Structure of Linear and Cyclic Codes over a Finite Chain Ring , 2000, Applicable Algebra in Engineering, Communication and Computing.
[6] Chris J. Mitchell. On Integer-Valued Rational Polynomials and Depth Distributions of Binary Codes , 1998, IEEE Trans. Inf. Theory.
[7] Hongwei Liu,et al. Constacyclic codes of length 2ps over Fpm+uFpm , 2010, Finite Fields Their Appl..
[8] N. J. A. Sloane,et al. The Z4-linearity of Kerdock, Preparata, Goethals, and related codes , 1994, IEEE Trans. Inf. Theory.
[9] Taher Abualrub,et al. Constacyclic codes over F2+uF2 , 2009, J. Frankl. Inst..
[10] Y. Cengellenmis. On some special codes over Fp + uFp + u2Fp , 2011, Appl. Math. Comput..
[11] Yonglin Cao. On constacyclic codes over finite chain rings , 2013, Finite Fields Their Appl..
[12] Steven T. Dougherty,et al. On modular cyclic codes , 2007, Finite Fields Their Appl..
[13] Bo Kong,et al. The depth spectrums of constacyclic codes over finite chain rings , 2015, Discret. Math..
[14] Shixin Zhu,et al. (1+λu)-Constacyclic codes over Fp[u]/〈um〉 , 2010, J. Frankl. Inst..
[15] H. Dinh. Constacyclic Codes of Length $2^s$ Over Galois Extension Rings of ${\BBF}_{2}+u{\BBF}_2$ , 2009, IEEE Transactions on Information Theory.
[16] Shixin Zhu,et al. The depth spectrum of negacyclic codes over Z4 , 2017, Discret. Math..