On the depth spectrum of repeated-root constacyclic codes over finite chain rings

Abstract Let R be a finite commutative chain ring and γ be a fixed generator of the maximal ideal of R . For any unit w in R , ( 1 + w γ ) -constacyclic codes over R as a generalization of negacyclic codes over Z 4 are a class of important linear codes. In this paper, based on algebraic structure, the generator polynomials of all torsion codes of ( 1 + w γ ) -constacyclic codes of any length over R are first given. Then, by using these torsion codes, we completely determine the depth spectrums of ( 1 + w γ ) -constacyclic codes over R of any length.

[1]  J. Wolfman Negacyclic and cyclic codes over Z/sub 4/ , 1999 .

[2]  Victor K.-W. Wei,et al.  On the depth distribution of linear codes , 2000, IEEE Trans. Inf. Theory.

[3]  Tuvi Etzion The depth distribution-a new characterization for linear codes , 1997, IEEE Trans. Inf. Theory.

[4]  Thomas Blackford,et al.  Negacyclic codes over Z4 of even length , 2003, IEEE Trans. Inf. Theory.

[5]  Graham H. Norton,et al.  On the Structure of Linear and Cyclic Codes over a Finite Chain Ring , 2000, Applicable Algebra in Engineering, Communication and Computing.

[6]  Chris J. Mitchell On Integer-Valued Rational Polynomials and Depth Distributions of Binary Codes , 1998, IEEE Trans. Inf. Theory.

[7]  Hongwei Liu,et al.  Constacyclic codes of length 2ps over Fpm+uFpm , 2010, Finite Fields Their Appl..

[8]  N. J. A. Sloane,et al.  The Z4-linearity of Kerdock, Preparata, Goethals, and related codes , 1994, IEEE Trans. Inf. Theory.

[9]  Taher Abualrub,et al.  Constacyclic codes over F2+uF2 , 2009, J. Frankl. Inst..

[10]  Y. Cengellenmis On some special codes over Fp + uFp + u2Fp , 2011, Appl. Math. Comput..

[11]  Yonglin Cao On constacyclic codes over finite chain rings , 2013, Finite Fields Their Appl..

[12]  Steven T. Dougherty,et al.  On modular cyclic codes , 2007, Finite Fields Their Appl..

[13]  Bo Kong,et al.  The depth spectrums of constacyclic codes over finite chain rings , 2015, Discret. Math..

[14]  Shixin Zhu,et al.  (1+λu)-Constacyclic codes over Fp[u]/〈um〉 , 2010, J. Frankl. Inst..

[15]  H. Dinh Constacyclic Codes of Length $2^s$ Over Galois Extension Rings of ${\BBF}_{2}+u{\BBF}_2$ , 2009, IEEE Transactions on Information Theory.

[16]  Shixin Zhu,et al.  The depth spectrum of negacyclic codes over Z4 , 2017, Discret. Math..