Are we missing something when evaluating adsorbents for CO2 capture at the system level?

The right ingredients and scales for a proper assessment of adsorbents for CO2 capture.

[1]  Ahmed Alhajaj,et al.  A techno-economic analysis of post-combustion CO2 capture and compression applied to a combined cycle gas turbine: Part II. Identifying the cost-optimal control and design variables , 2016 .

[2]  W. Goddard,et al.  UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations , 1992 .

[3]  Michael C. Georgiadis,et al.  Model-Based Approach for the Evaluation of Materials and Processes for Post-Combustion Carbon Dioxide Capture from Flue Gas by PSA/VSA Processes , 2016 .

[4]  Eustathios S. Kikkinides,et al.  Modelling and optimization of hybrid PSA/membrane separation processes , 2015, Adsorption.

[5]  Kasturi Nagesh Pai,et al.  Prediction of MOF performance in Vacuum-Swing Adsorption systems for post-combustion CO2 capture based on integrated molecular simulation, process optimizations, and machine learning models. , 2020, Environmental science & technology.

[6]  Mohammad Amanullah,et al.  Multiobjective Optimization of a Four-Step Adsorption Process for Postcombustion CO2 Capture Via Finite Volume Simulation , 2013 .

[7]  Kenji Sumida,et al.  Evaluating metal–organic frameworks for post-combustion carbon dioxide capture via temperature swing adsorption , 2011 .

[8]  C. Serre,et al.  An adsorbent performance indicator as a first step evaluation of novel sorbents for gas separations: application to metal-organic frameworks. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[9]  C. Domingo,et al.  Hybrid aminopolymer–silica materials for efficient CO2 adsorption , 2015 .

[10]  Dianne E. Wiley,et al.  Reducing the Cost of CO2 Capture from Flue Gases Using Pressure Swing Adsorption , 2008 .

[11]  Ping Li,et al.  Onsite CO2 Capture from Flue Gas by an Adsorption Process in a Coal-Fired Power Plant , 2012 .

[12]  Christodoulos A Floudas,et al.  Cost-effective CO2 capture based on in silico screening of zeolites and process optimization. , 2013, Physical chemistry chemical physics : PCCP.

[13]  Richard C. Baliban,et al.  Modeling, Simulation, and Optimization of Postcombustion CO2 Capture for Variable Feed Concentration and Flow Rate. 1. Chemical Absorption and Membrane Processes , 2012 .

[14]  C2 adsorption in zeolites: in silico screening and sensitivity to molecular models , 2018 .

[15]  Charles J. Freeman,et al.  A single-component water-lean post-combustion CO2 capture solvent with exceptionally low operational heat and total costs of capture – comprehensive experimental and theoretical evaluation , 2020 .

[16]  Daniel Friedrich,et al.  Exploring new sources of efficiency in process-driven materials screening for post-combustion carbon capture , 2020, Energy & Environmental Science.

[17]  Ismail I. I. Alkhatib,et al.  Performance of non-aqueous amine hybrid solvents mixtures for CO2 capture: A study using a molecular-based model , 2020 .

[18]  B. Bruggen,et al.  The role of membranes in post-combustion CO2 capture , 2013 .

[19]  Paul S. Fennell,et al.  The calcium looping cycle for large-scale CO2 capture , 2010 .

[20]  D. Caputo,et al.  Modeling Carbon Dioxide Adsorption on Microporous Substrates: Comparison between Cu-BTC Metal-Organic Framework and 13X Zeolitic Molecular Sieve , 2010 .

[21]  Alexandre F. P. Ferreira,et al.  Electrical conductive 3D-printed monolith adsorbent for CO2 capture , 2019, Microporous and Mesoporous Materials.

[22]  Ismail I. I. Alkhatib,et al.  A Comparative Assessment of Emerging Solvents and Adsorbents for Mitigating CO2 Emissions From the Industrial Sector by Using Molecular Modeling Tools , 2020, Frontiers in Energy Research.

[23]  R. T. Yang,et al.  A SIMPLE PARAMETER FOR SELECTING AN ADSORBENT FOR GAS SEPARATION BY PRESSURE SWING ADSORPTION , 2001 .

[24]  Alírio E. Rodrigues,et al.  Multi-bed Vacuum Pressure Swing Adsorption for carbon dioxide capture from flue gas , 2011 .

[25]  I. Karimi,et al.  Energy and cost estimates for capturing CO2 from a dry flue gas using pressure/vacuum swing adsorption , 2015 .

[26]  P. Gamallo,et al.  Computational simulation study of the influence of faujasite Si/Al ratio on CO2 capture by temperature swing adsorption , 2017 .

[27]  Abhoyjit S Bhown,et al.  In silico screening of carbon-capture materials. , 2012, Nature materials.

[28]  H. Beum,et al.  A 2-stage PSA process for the recovery of CO2 from flue gas and its power consumption* , 2004 .

[29]  Shamsuzzaman Farooq,et al.  Integrated Adsorbent Process Optimization for Minimum Cost of Electricity Including Carbon Capture by a VSA Process , 2018, AIChE Journal.

[30]  Ping Li,et al.  CO2 Capture from Flue Gas in an Existing Coal-Fired Power Plant by Two Successive Pilot-Scale VPSA Units , 2013 .

[31]  A. Rodrigues,et al.  CO2 Capture in Chemically and Thermally Modified Activated Carbons Using Breakthrough Measurements: Experimental and Modeling Study , 2018, Industrial & Engineering Chemistry Research.

[32]  Olav Bolland,et al.  Evaluating Pressure Swing Adsorption as a CO2 separation technique in coal-fired power plants , 2015 .

[33]  Rached Ben-Mansour,et al.  Energy and productivity efficient vacuum pressure swing adsorption process to separate CO2 from CO2/N2 mixture using Mg-MOF-74: A CFD simulation , 2018 .

[34]  Edward S. Rubin,et al.  Evaluation of potential cost reductions from improved amine-based CO2 capture systems , 2006 .

[35]  Mohammad R. M. Abu-Zahra,et al.  Performance of Activated Carbons Derived from Date Seeds in CO2 Swing Adsorption Determined by Combining Experimental and Molecular Simulation Data , 2020 .

[36]  Alírio E. Rodrigues,et al.  Capture of CO2 from flue gas by vacuum pressure swing adsorption using activated carbon beads , 2011 .

[37]  S. Farooq,et al.  Simulation and Optimization of a Dual-Adsorbent, Two-Bed Vacuum Swing Adsorption Process for CO2 Capture from Wet Flue Gas , 2014 .

[38]  S. Farooq,et al.  Simulation and optimization of a 6-step dual-reflux VSA cycle for post-combustion CO2 capture , 2016 .

[39]  L. Vega,et al.  Pharmaceutical Removal from Water Effluents by Adsorption on Activated Carbons: A Monte Carlo Simulation Study. , 2017, Langmuir : the ACS journal of surfaces and colloids.

[40]  Alexander Zoelle,et al.  Cost and Performance Baseline for Fossil Energy Plants Volume 1: Bituminous Coal and Natural Gas to Electricity , 2019 .

[41]  Olav Bolland,et al.  Inherent CO2 Capture Using Chemical Looping Combustion in a Natural Gas Fired Power Cycle , 2004 .

[42]  G. Manzolini,et al.  A comprehensive modeling of the hybrid temperature electric swing adsorption process for CO2 capture , 2018, International Journal of Greenhouse Gas Control.

[43]  Aarti,et al.  CO2 recovery from mixtures with nitrogen in a vacuum swing adsorber using metal organic framework adsorbent: A comparative study , 2012 .

[44]  M. Georgiadis,et al.  A model-based approach for the evaluation of new zeolite 13X-based adsorbents for the efficient post-combustion CO2 capture using P/VSA processes , 2017 .

[45]  S. Brandani,et al.  From Crystal to Adsorption Column: Challenges in Multiscale Computational Screening of Materials for Adsorption Separation Processes , 2018, Industrial & Engineering Chemistry Research.

[46]  L. Vega,et al.  Microporous carbon adsorbents with high CO2 capacities for industrial applications. , 2011, Physical chemistry chemical physics : PCCP.

[47]  P. Gamallo,et al.  Energetic evaluation of swing adsorption processes for CO 2 capture in selected MOFs and zeolites: Effect of impurities , 2018, Chemical Engineering Journal.

[48]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[49]  Ping Li,et al.  Two-Stage VPSA Process for CO2 Capture from Flue Gas Using Activated Carbon Beads , 2012 .

[50]  D. Olson The crystal structure of dehydrated NaX , 1995 .

[51]  Regina de Fátima Peralta Muniz Moreira,et al.  Modeling of the fixed - bed adsorption of carbon dioxide and a carbon dioxide - nitrogen mixture on zeolite 13X , 2011 .

[52]  L. Heroux,et al.  Argon adsorption on Cu3(benzene-1,3,5-tricarboxylate)2(H2O)3 metal-organic framework. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[53]  Lorenz T. Biegler,et al.  Optimization of Pressure Swing Adsorption and Fractionated Vacuum Pressure Swing Adsorption Processes for CO2 Capture , 2005 .

[54]  R. Ben‐Mansour,et al.  Evaluation of Mg‐MOF‐74 for post‐combustion carbon dioxide capture through pressure swing adsorption , 2015 .

[55]  S. L. Mayo,et al.  DREIDING: A generic force field for molecular simulations , 1990 .

[56]  Karson T Leperi,et al.  Optimization of Two-Stage Pressure/Vacuum Swing Adsorption with Variable Dehydration Level for Postcombustion Carbon Capture , 2016 .

[57]  Paul A Webley,et al.  Cycle development and design for CO2 capture from flue gas by vacuum swing adsorption. , 2008, Environmental science & technology.

[58]  W. L. Jorgensen,et al.  The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. , 1988, Journal of the American Chemical Society.

[59]  Lourdes F. Vega,et al.  Systematic evaluation of materials for post-combustion CO2 capture in a Temperature Swing Adsorption process , 2016 .

[60]  Paul A. Webley,et al.  A new simplified pressure/vacuum swing adsorption model for rapid adsorbent screening for CO2 capture applications , 2013 .

[61]  Mohammad Amanullah,et al.  CO2 capture from dry flue gas by vacuum swing adsorption: A pilot plant study , 2014 .

[62]  Marc Marshall,et al.  Comparison of Cu-BTC and zeolite 13X for adsorbent based CO2 separation , 2009 .

[63]  N. Mac Dowell,et al.  Exploring the limits of adsorption-based CO2 capture using MOFs with PVSA – from molecular design to process economics , 2020 .

[64]  Carlos A. Grande,et al.  New insights into UTSA-16. , 2016, Physical chemistry chemical physics : PCCP.

[65]  R. Krishna,et al.  Microporous metal-organic framework with potential for carbon dioxide capture at ambient conditions , 2012, Nature Communications.

[66]  Jinyue Yan,et al.  Adsorbents for the post-combustion capture of CO2 using rapid temperature swing or vacuum swing adsorption , 2013 .

[67]  M. Georgiadis,et al.  An Integrated Two-Stage P/VSA Process for Postcombustion CO2 Capture Using Combinations of Adsorbents Zeolite 13X and Mg-MOF-74 , 2017 .

[68]  Charles J. Freeman,et al.  Techno-economic comparison of various process configurations for post-combustion carbon capture using a single-component water-lean solvent , 2021 .

[69]  A. Rodrigues,et al.  Carbon dioxide-nitrogen separation through pressure swing adsorption , 2011 .

[70]  Paul A. Webley,et al.  CO2 Capture by Temperature Swing Adsorption: Use of Hot CO2-Rich Gas for Regeneration , 2016 .

[71]  Paul A. Webley,et al.  Adsorption technology for CO2 separation and capture: a perspective , 2014, Adsorption.

[72]  Ping Li,et al.  Experimental evaluation of adsorption technology for CO2 capture from flue gas in an existing coal-fired power plant , 2013 .

[73]  Yongchul G. Chung,et al.  Development of a General Evaluation Metric for Rapid Screening of Adsorbent Materials for Postcombustion CO2 Capture , 2019, ACS Sustainable Chemistry & Engineering.

[74]  Carlos A. Grande,et al.  Adsorption and diffusion of H2, N2, CO, CH4 and CO2 in UTSA-16 metal-organic framework extrudates , 2015 .

[75]  Alírio E. Rodrigues,et al.  CO2 Capture from NGCC Power Stations using Electric Swing Adsorption (ESA) , 2009 .

[76]  Ian D. Williams,et al.  A chemically functionalizable nanoporous material (Cu3(TMA)2(H2O)3)n , 1999 .

[77]  Mohammad Amanullah,et al.  Surrogate-based VSA Process Optimization for Post-Combustion CO2 Capture , 2011 .

[78]  Yongchul G. Chung,et al.  High-Throughput Screening of Metal-Organic Frameworks for CO2 Capture in the Presence of Water. , 2016, Langmuir : the ACS journal of surfaces and colloids.

[79]  F. Larachi,et al.  Ionic liquids for CO2 capture—Development and progress , 2010 .

[80]  Sergey N. Maximoff,et al.  Ab initio carbon capture in open-site metal-organic frameworks. , 2012, Nature chemistry.

[81]  L. Vega,et al.  Hybrid – Slurry/Nanofluid systems as alternative to conventional chemical absorption for carbon dioxide capture: A review , 2021 .

[82]  A. Matzger,et al.  Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores. , 2008, Journal of the American Chemical Society.

[83]  Hye-Young Cho,et al.  CO2 capture and conversion using Mg-MOF-74 prepared by a sonochemical method , 2012 .

[84]  Yixiang Shi,et al.  New hybrid composite honeycomb monolith with 13X zeolite and activated carbon for CO2 capture , 2018, Adsorption.

[85]  Seda Keskin,et al.  Effects of Force Field Selection on the Computational Ranking of MOFs for CO2 Separations , 2018, Industrial & engineering chemistry research.

[86]  L. Sarkisov,et al.  Molecular simulation of multi-component adsorption processes related to carbon capture in a high surface area, disordered activated carbon , 2015 .

[87]  Michael James,et al.  Comprehensive study of carbon dioxide adsorption in the metal–organic frameworks M2(dobdc) (M = Mg, Mn, Fe, Co, Ni, Cu, Zn) , 2014 .