Computer-intensive simulation of solid-state NMR experiments using SIMPSON.

Conducting large-scale solid-state NMR simulations requires fast computer software potentially in combination with efficient computational resources to complete within a reasonable time frame. Such simulations may involve large spin systems, multiple-parameter fitting of experimental spectra, or multiple-pulse experiment design using parameter scan, non-linear optimization, or optimal control procedures. To efficiently accommodate such simulations, we here present an improved version of the widely distributed open-source SIMPSON NMR simulation software package adapted to contemporary high performance hardware setups. The software is optimized for fast performance on standard stand-alone computers, multi-core processors, and large clusters of identical nodes. We describe the novel features for fast computation including internal matrix manipulations, propagator setups and acquisition strategies. For efficient calculation of powder averages, we implemented interpolation method of Alderman, Solum, and Grant, as well as recently introduced fast Wigner transform interpolation technique. The potential of the optimal control toolbox is greatly enhanced by higher precision gradients in combination with the efficient optimization algorithm known as limited memory Broyden-Fletcher-Goldfarb-Shanno. In addition, advanced parallelization can be used in all types of calculations, providing significant time reductions. SIMPSON is thus reflecting current knowledge in the field of numerical simulations of solid-state NMR experiments. The efficiency and novel features are demonstrated on the representative simulations.

[1]  Kiyonori Takegoshi,et al.  13C–1H dipolar-assisted rotational resonance in magic-angle spinning NMR , 2001 .

[2]  Andrew E. Bennett,et al.  Heteronuclear decoupling in rotating solids , 1995 .

[3]  J. Nocedal Updating Quasi-Newton Matrices With Limited Storage , 1980 .

[4]  Stefan Kunis,et al.  Using NFFT 3---A Software Library for Various Nonequispaced Fast Fourier Transforms , 2009, TOMS.

[5]  M. Leskes,et al.  Bimodal Floquet description of heteronuclear dipolar decoupling in solid-state nuclear magnetic resonance. , 2007, The Journal of chemical physics.

[6]  Navin Khaneja,et al.  Optimal Control Methods in NMR Spectroscopy , 2010 .

[7]  Wyndham B Blanton,et al.  BlochLib: a fast NMR C++ tool kit. , 2003, Journal of magnetic resonance.

[8]  M. Ernst,et al.  Insights into homonuclear decoupling from efficient numerical simulation: techniques and examples. , 2008, Journal of magnetic resonance.

[9]  M. S. Vinding,et al.  Fast numerical design of spatial-selective rf pulses in MRI using Krotov and quasi-Newton based optimal control methods. , 2012, The Journal of chemical physics.

[10]  M. Levitt,et al.  NUMERICAL SIMULATION OF PERIODIC NUCLEAR MAGNETIC RESONANCE PROBLEMS : FAST CALCULATION OF CAROUSEL AVERAGES , 1998 .

[11]  E. Tajkhorshid,et al.  Residue-specific information about the dynamics of antimicrobial peptides from (1)H-(15)N and (2)H solid-state NMR spectroscopy. , 2009, Journal of the American Chemical Society.

[12]  G. Bodenhausen,et al.  Efficient heteronuclear decoupling by quenching rotary resonance in solid-state NMR , 2008 .

[13]  Thomas Vosegaard,et al.  Numerical Simulations in Biological Solid-State NMR Spectroscopy , 2004 .

[14]  L. Frydman,et al.  Isotropic Spectra of Half-Integer Quadrupolar Spins from Bidimensional Magic-Angle Spinning NMR , 1995 .

[15]  Mikhail Veshtort Numerical simulations in nuclear magnetic resonance : theory and applications , 2003 .

[16]  Jimmy D. Bell,et al.  Modern Magnetic Resonance , 2006 .

[17]  L. S. Pontryagin,et al.  Mathematical Theory of Optimal Processes , 1962 .

[18]  George Bosilca,et al.  Open MPI: Goals, Concept, and Design of a Next Generation MPI Implementation , 2004, PVM/MPI.

[19]  Timo O. Reiss,et al.  Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms. , 2005, Journal of magnetic resonance.

[20]  Levitt,et al.  Computation of Orientational Averages in Solid-State NMR by Gaussian Spherical Quadrature. , 1998, Journal of magnetic resonance.

[21]  Cleve B. Moler,et al.  Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later , 1978, SIAM Rev..

[22]  Jan Mayer,et al.  A numerical evaluation of preprocessing and ILU-type preconditioners for the solution of unsymmetric sparse linear systems using iterative methods , 2009, TOMS.

[23]  L. Emsley,et al.  Numerical simulation of solid-state NMR experiments , 2000 .

[24]  V. Lebedev Values of the nodes and weights of ninth to seventeenth order gauss-markov quadrature formulae invariant under the octahedron group with inversion☆ , 1975 .

[25]  M. Edén,et al.  Interpolation by fast Wigner transform for rapid calculations of magnetic resonance spectra from powders. , 2011, The Journal of chemical physics.

[26]  Navin Khaneja,et al.  Optimal control based NCO and NCA experiments for spectral assignment in biological solid-state NMR spectroscopy. , 2007, Journal of magnetic resonance.

[27]  N. Nielsen,et al.  Double‐quantum homonuclear rotary resonance: Efficient dipolar recovery in magic‐angle spinning nuclear magnetic resonance , 1994 .

[28]  S. Glaser,et al.  Second order gradient ascent pulse engineering. , 2011, Journal of magnetic resonance.

[29]  David M. Grant,et al.  Methods for analyzing spectroscopic line shapes. NMR solid powder patterns , 1986 .

[30]  B. Meier,et al.  Simple and efficient decoupling in magic-angle spinning solid-state NMR: the XiX scheme , 2002 .

[31]  G. Hoatson,et al.  Modelling one‐ and two‐dimensional solid‐state NMR spectra , 2002 .

[32]  I. Maximov,et al.  Optimal control design of NMR and dynamic nuclear polarization experiments using monotonically convergent algorithms. , 2008, The Journal of chemical physics.

[33]  Navin Khaneja,et al.  Optimal control in NMR spectroscopy: numerical implementation in SIMPSON. , 2009, Journal of magnetic resonance.

[34]  Bak,et al.  REPULSION, A Novel Approach to Efficient Powder Averaging in Solid-State NMR , 1997, Journal of magnetic resonance.

[35]  Jack Dongarra,et al.  PVM: Parallel virtual machine: a users' guide and tutorial for networked parallel computing , 1995 .

[36]  Gene H. Golub,et al.  Matrix computations , 1983 .

[37]  N. Nielsen,et al.  Exact effective Hamiltonian theory. II. Polynomial expansion of matrix functions and entangled unitary exponential operators. , 2004, The Journal of chemical physics.

[38]  Matts Roos,et al.  MINUIT-a system for function minimization and analysis of the parameter errors and correlations , 1984 .

[39]  P. Madhu,et al.  Swept-frequency two-pulse phase modulation for heteronuclear dipolar decoupling in solid-state NMR , 2006 .

[40]  Max Wolfsberg,et al.  Investigations of a nonrandom numerical method for multidimensional integration , 1973 .

[41]  L. Emsley,et al.  Numerical simulation of free evolution in solid-state nuclear magnetic resonance using low-order correlations in Liouville space. , 2010, The Journal of chemical physics.

[42]  Navin Khaneja,et al.  Improving solid-state NMR dipolar recoupling by optimal control. , 2004, Journal of the American Chemical Society.

[43]  S. K. Zaremba,et al.  Good lattice points, discrepancy, and numerical integration , 1966 .

[44]  Stefan Kunis,et al.  Fast spherical Fourier algorithms , 2003 .

[45]  N. Khaneja,et al.  Improved excitation schemes for multiple-quantum magic-angle spinning for quadrupolar nuclei designed using optimal control theory. , 2005, Journal of the American Chemical Society.

[46]  M. Edén Computer simulations in solid-state NMR. II. implementations for static and rotating samples , 2003 .

[47]  B. Meier,et al.  Distance information from proton-driven spin diffusion under MAS , 2006 .

[48]  M Bak,et al.  SIMPSON: a general simulation program for solid-state NMR spectroscopy. , 2000, Journal of magnetic resonance.

[49]  Christoffer Laustsen,et al.  Storage of magnetization as singlet order by optimal control designed pulses , 2014, Magnetic resonance in medicine.

[50]  Arthur E. Bryson,et al.  Applied Optimal Control , 1969 .

[51]  Closed solution to the Baker-Campbell-Hausdorff problem: exact effective Hamiltonian theory for analysis of nuclear-magnetic-resonance experiments. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[52]  B. Meier,et al.  Computer Simulations in Magnetic Resonance. An Object-Oriented Programming Approach , 1994 .

[53]  C. Kehlet,et al.  Resolution-Enhanced Solid-State NMR13C−13C Correlation Spectroscopy by Optimal Control Dipolar-Driven Spin-State-Selective Coherence Transfer , 2011 .

[54]  Christian O. Bretschneider,et al.  Conversion of parahydrogen induced longitudinal two-spin order to evenly distributed single spin polarisation by optimal control pulse sequences. , 2012, The Journal of chemical physics.

[55]  George M. Siouris,et al.  Applied Optimal Control: Optimization, Estimation, and Control , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[56]  Jack Dongarra,et al.  LAPACK Users' Guide, 3rd ed. , 1999 .

[57]  L. Emsley,et al.  Dynamics of large nuclear-spin systems from low-order correlations in Liouville space , 2009 .

[58]  M. Ernst Heteronuclear spin decoupling in solid-state NMR under magic-angle sample spinning. , 2003, Journal of magnetic resonance.

[59]  M. Levitt,et al.  Pulse sequence symmetries in the nuclear magnetic resonance of spinning solids: Application to heteronuclear decoupling , 1999 .

[60]  Harold Conroy,et al.  Molecular Schrödinger Equation. VIII. A New Method for the Evaluation of Multidimensional Integrals , 1967 .

[61]  Navin Khaneja,et al.  Effective Hamiltonians by optimal control: solid-state NMR double-quantum planar and isotropic dipolar recoupling. , 2006, The Journal of chemical physics.

[62]  I. Kuprov,et al.  Spinach A Software Library for Simulation of Spin Dynamics in Large Spin Systems , 2012 .

[63]  N. Higham The Scaling and Squaring Method for the Matrix Exponential Revisited , 2005, SIAM J. Matrix Anal. Appl..

[64]  Andreas Brinkmann,et al.  Symmetry principles for the design of radiofrequency pulse sequences in the nuclear magnetic resonance of rotating solids , 2000 .

[65]  Subhradip Paul,et al.  On the choice of heteronuclear dipolar decoupling scheme in solid-state NMR. , 2010, Journal of magnetic resonance.

[66]  M. Edén,et al.  Efficient orientational averaging by the extension of Lebedev grids via regularized octahedral symmetry expansion. , 2006, Journal of magnetic resonance.

[67]  U. Haeberlen,et al.  Coherent Averaging Effects in Magnetic Resonance , 1968 .

[68]  E. Salager,et al.  Ab initio simulation of proton spin diffusion. , 2010, Physical chemistry chemical physics : PCCP.

[69]  M. Hohwy,et al.  Efficient Spectral Simulations in NMR of Rotating Solids. The γ-COMPUTE Algorithm , 1999 .

[70]  L. Frydman,et al.  Multiple-Quantum Magic-Angle Spinning NMR: A New Method for the Study of Quadrupolar Nuclei in Solids , 1995 .

[71]  N. Nielsen,et al.  A comparison of NCO and NCA transfer methods for biological solid-state NMR spectroscopy. , 2012, Journal of magnetic resonance.

[72]  Analytical and Numerical Tools for Experiment Design in Solid-State NMR Spectroscopy , 2008 .

[73]  B. Fung,et al.  An improved broadband decoupling sequence for liquid crystals and solids. , 2000, Journal of magnetic resonance.

[74]  Jacco D. van Beek,et al.  matNMR: A flexible toolbox for processing, analyzing and visualizing magnetic resonance data in Matlab® , 2007 .

[75]  L. O’Dell,et al.  Optimized excitation pulses for the acquisition of static NMR powder patterns from half-integer quadrupolar nuclei. , 2010, Journal of magnetic resonance.

[76]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[77]  T. Vosegaard Challenges in numerical simulations of solid-state NMR experiments: spin exchange pulse sequences. , 2010, Solid state nuclear magnetic resonance.

[78]  C. Fermon,et al.  Efficient Time Propagation Technique for MAS NMR Simulation: Application to Quadrupolar Nuclei. , 1998, Journal of magnetic resonance.

[79]  N. Nielsen,et al.  Satellite transitions in MAS NMR spectra of quadrupolar nuclei , 1991 .

[80]  Mattias Edén,et al.  Computer simulations in solid-state NMR. III. powder averaging , 2003 .

[81]  Good Lattice Pointsの計算法について , 1986 .

[82]  R. Kosloff Propagation Methods for Quantum Molecular Dynamics , 1994 .

[83]  H. Carr,et al.  The Principles of Nuclear Magnetism , 1961 .

[84]  B. Reif,et al.  Optimal (2)H rf Pulses and (2)H-(13)C Cross-Polarization Methods for Solid-State (2)H MAS NMR of Perdeuterated Proteins. , 2011, The journal of physical chemistry letters.

[85]  N. Nielsen,et al.  Specification and visualization of anisotropic interaction tensors in polypeptides and numerical simulations in biological solid-state NMR. , 2002, Journal of magnetic resonance.

[86]  Alexej Jerschow,et al.  MathNMR: spin and spatial tensor manipulations in Mathematica. , 2005, Journal of magnetic resonance.

[87]  M. Edén Computer simulations in solid-state NMR. I. Spin dynamics theory , 2003 .

[88]  Ilya Kuprov,et al.  Strategies for state space restriction in densely coupled spin systems with applications to spin chemistry. , 2010, The Journal of chemical physics.

[89]  Ivan I. Maximov,et al.  A smoothing monotonic convergent optimal control algorithm for nuclear magnetic resonance pulse sequence design. , 2010, The Journal of chemical physics.

[90]  A. D. Bain,et al.  Simulation of many-spin system dynamics via sparse matrix methodology , 1997 .

[91]  A. B. Nielsen,et al.  Symmetry-based dipolar recoupling by optimal control: band-selective experiments for assignment of solid-state NMR spectra of proteins. , 2009, The Journal of chemical physics.

[92]  J. Demmel,et al.  Sun Microsystems , 1996 .

[93]  A. Malmendal,et al.  The Flexibility of SIMPSON and SIMMOL for Numerical Simulations in Solid-and Liquid-State NMR Spectroscopy , 2002 .

[94]  C. Loan,et al.  Nineteen Dubious Ways to Compute the Exponential of a Matrix , 1978 .

[95]  M. Hohwy,et al.  Systematic design and evaluation of multiple-pulse experiments in nuclear magnetic resonance spectroscopy using a semi-continuous Baker–Campbell–Hausdorff expansion , 1998 .

[96]  M. Levitt,et al.  Efficient Simulation of Periodic Problems in NMR. Application to Decoupling and Rotational Resonance , 1996 .

[97]  V. Lebedev,et al.  A QUADRATURE FORMULA FOR THE SPHERE OF THE 131ST ALGEBRAIC ORDER OF ACCURACY , 1999 .

[98]  Mikhail Veshtort,et al.  SPINEVOLUTION: a powerful tool for the simulation of solid and liquid state NMR experiments. , 2006, Journal of magnetic resonance.

[99]  Ilya Kuprov,et al.  Polynomially scaling spin dynamics simulation algorithm based on adaptive state-space restriction. , 2007, Journal of magnetic resonance.

[100]  Ilya Kuprov,et al.  Polynomially scaling spin dynamics II: further state-space compression using Krylov subspace techniques and zero track elimination. , 2008, Journal of magnetic resonance.

[101]  L. O’Dell,et al.  New methods for the acquisition of ultra-wideline solid-state NMR spectra of spin-1/2 nuclides. , 2011, Journal of magnetic resonance.

[102]  A. B. Nielsen,et al.  Refocused continuous-wave decoupling: a new approach to heteronuclear dipolar decoupling in solid-state NMR spectroscopy. , 2012, The Journal of chemical physics.

[103]  Christoffer Laustsen,et al.  Dynamic nuclear polarization and optimal control spatial-selective 13C MRI and MRS. , 2013, Journal of magnetic resonance.

[104]  H. J. Jakobsen,et al.  Quadrupole Coupling and Anisotropic Shielding from Single-Crystal NMR of the Central Transition for Quadrupolar Nuclei.87Rb NMR of RbClO4and Rb2SO4 , 1996 .

[105]  E. Tajkhorshid,et al.  Incorporation of antimicrobial peptides into membranes: a combined liquid-state NMR and molecular dynamics study of alamethicin in DMPC/DHPC bicelles. , 2009, The journal of physical chemistry. B.