Hamilton–Jacobi Theory and Parametric Analysis in Fully Convex Problems of Optimal Control
暂无分享,去创建一个
[1] M. Bardi,et al. Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations , 1997 .
[2] R. Tyrell. Rockafellar. Semigroups of convex bifunctions generated by Lagrange problems in the calculus of variations. , 1975 .
[3] 丸山 徹. Convex Analysisの二,三の進展について , 1977 .
[4] R. Tyrrell Rockafellar,et al. Convexity in Hamilton-Jacobi Theory I: Dynamics and Duality , 2000, SIAM J. Control. Optim..
[5] R. T. Roc. Saddle Points of Hamiltonian Systems in Convex Problems of Lagrange ' , .
[6] R. Rockafellar,et al. Generalized Conjugacy in Hamilton-Jacobi Theory for Fully Convex Lagrangians , 2002 .
[7] R. T. Rockafellar,et al. Convex Analysis in the Calculus of Variations , 2001 .
[8] R. Tyrrell Rockafellar,et al. Convexity in Hamilton-Jacobi Theory II: Envelope Representations , 2000, SIAM J. Control. Optim..
[9] R. Rockafellar,et al. Generalized Hamiltonian equations for convex problems of Lagrange. , 1970 .
[10] F. Clarke. Optimization And Nonsmooth Analysis , 1983 .
[11] R. Rockafellar,et al. Conjugate convex functions in optimal control and the calculus of variations , 1970 .