Dynamic gut microbiome changes following regional intestinal lymphatic obstruction in primates.

[1]  C. Serhan,et al.  Endogenous Specialized Proresolving Mediator Profiles in a Novel Experimental Model of Lymphatic Obstruction and Intestinal Inflammation in African Green Monkeys. , 2019, The American journal of pathology.

[2]  Guizhi Yang,et al.  Enteric dysbiosis-linked gut barrier disruption triggers early renal injury induced by chronic high salt feeding in mice , 2017, Experimental &Molecular Medicine.

[3]  C. Bernardazzi,et al.  Diet and microbiota in inflammatory bowel disease: The gut in disharmony , 2017, World journal of gastroenterology.

[4]  C. Mackay,et al.  Diet-Derived Short Chain Fatty Acids Stimulate Intestinal Epithelial Cells To Induce Mucosal Tolerogenic Dendritic Cells , 2017, The Journal of Immunology.

[5]  P. Popovich,et al.  Gut dysbiosis impairs recovery after spinal cord injury , 2016, The Journal of experimental medicine.

[6]  E. Khafipour,et al.  Acute dextran sulfate sodium (DSS)‐induced colitis promotes gut microbial dysbiosis in mice , 2016, Journal of basic microbiology.

[7]  J. Clemente,et al.  Intestinal Microbiota Is Influenced by Gender and Body Mass Index , 2016, PloS one.

[8]  R. Osawa,et al.  Age-related changes in gut microbiota composition from newborn to centenarian: a cross-sectional study , 2016, BMC Microbiology.

[9]  J. Kabeerdoss,et al.  Alterations of mucosal microbiota in the colon of patients with inflammatory bowel disease revealed by real time polymerase chain reaction amplification of 16S ribosomal ribonucleic acid , 2015, The Indian journal of medical research.

[10]  D. Johnson,et al.  The Influence of the Gut Microbiome on Obesity, Metabolic Syndrome and Gastrointestinal Disease , 2015, Clinical and Translational Gastroenterology.

[11]  F. Abreo,et al.  Downregulation of FoxC2 Increased Susceptibility to Experimental Colitis: Influence of Lymphatic Drainage Function? , 2015, Inflammatory bowel diseases.

[12]  Jeroen Raes,et al.  How informative is the mouse for human gut microbiota research? , 2015, Disease Models & Mechanisms.

[13]  T. Kanai,et al.  The gut microbiota and inflammatory bowel disease , 2014, Seminars in Immunopathology.

[14]  H. Ochman,et al.  Rapid changes in the gut microbiome during human evolution , 2014, Proceedings of the National Academy of Sciences.

[15]  J. Alexander,et al.  Lymphatic dysregulation in intestinal inflammation: new insights into inflammatory bowel disease pathomechanisms. , 2014, Lymphology.

[16]  J. Mathis,et al.  VEGF-A isoform modulation in an preclinical TNBS model of ulcerative colitis: protective effects of a VEGF164b therapy , 2013, Journal of Translational Medicine.

[17]  T. Hibi,et al.  A single strain of Clostridium butyricum induces intestinal IL-10-producing macrophages to suppress acute experimental colitis in mice. , 2013, Cell host & microbe.

[18]  L. Rigottier-Gois,et al.  Dysbiosis in inflammatory bowel diseases: the oxygen hypothesis , 2013, The ISME Journal.

[19]  J. Mathis,et al.  Gut sterilization in experimental colitis leukocyte mediated colon injury, and effects on angiogenesis/lymphangiogenesis , 2013 .

[20]  Anders K. Haakonsson,et al.  Short-Chain Fatty Acids Stimulate Angiopoietin-Like 4 Synthesis in Human Colon Adenocarcinoma Cells by Activating Peroxisome Proliferator-Activated Receptor γ , 2013, Molecular and Cellular Biology.

[21]  F. Tonelli,et al.  Is lymphatic status related to regression of inflammation in Crohn's disease? , 2012, World journal of gastrointestinal surgery.

[22]  A. Klindworth,et al.  Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies , 2012, Nucleic acids research.

[23]  Curtis Huttenhower,et al.  Microbial Co-occurrence Relationships in the Human Microbiome , 2012, PLoS Comput. Biol..

[24]  M. Platzer,et al.  Comparative evaluation of establishing a human gut microbial community within rodent models , 2012, Gut microbes.

[25]  Harry J Flint,et al.  The gut anaerobe Faecalibacterium prausnitzii uses an extracellular electron shuttle to grow at oxic–anoxic interphases , 2012, The ISME Journal.

[26]  G. Hansson,et al.  Role of mucus layers in gut infection and inflammation. , 2012, Current opinion in microbiology.

[27]  F. Bushman,et al.  Linking Long-Term Dietary Patterns with Gut Microbial Enterotypes , 2011, Science.

[28]  P. Hawkins,et al.  SCFAs Induce Mouse Neutrophil Chemotaxis through the GPR43 Receptor , 2011, PloS one.

[29]  G. V. Chaitanya,et al.  Emerging roles of lymphatics in inflammatory bowel disease , 2010, Annals of the New York Academy of Sciences.

[30]  J. Alexander,et al.  Gastrointestinal lymphatics in health and disease. , 2010, Pathophysiology : the official journal of the International Society for Pathophysiology.

[31]  V. Ganta,et al.  Angiopoietin‐2 in experimental colitis , 2010, Inflammatory bowel diseases.

[32]  M. Usami,et al.  Butyrate and trichostatin A attenuate nuclear factor kappaB activation and tumor necrosis factor alpha secretion and increase prostaglandin E2 secretion in human peripheral blood mononuclear cells. , 2008, Nutrition research.

[33]  J. Tiedje,et al.  Naïve Bayesian Classifier for Rapid Assignment of rRNA Sequences into the New Bacterial Taxonomy , 2007, Applied and Environmental Microbiology.

[34]  F. Bäckhed,et al.  Postnatal lymphatic partitioning from the blood vasculature in the small intestine requires fasting-induced adipose factor , 2007, Proceedings of the National Academy of Sciences.

[35]  D. Binion,et al.  Paradox of simultaneous intestinal ischaemia and hyperaemia in inflammatory bowel disease , 2005, European journal of clinical investigation.

[36]  Guillermo Oliver,et al.  Lymphatic vascular defects promoted by Prox1 haploinsufficiency cause adult-onset obesity , 2005, Nature Genetics.

[37]  J. Hampe,et al.  Reduction in diversity of the colonic mucosa associated bacterial microflora in patients with active inflammatory bowel disease , 2004, Gut.

[38]  M. Dubinsky,et al.  Doppler US in patients with crohn disease: vessel density in the diseased bowel reflects disease activity. , 2000, Radiology.

[39]  W. Hörl,et al.  Anti‐inflammatory effects of sodium butyrate on human monocytes: potent inhibition of IL‐12 and up‐regulation of IL‐10 production , 2000, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[40]  J. Galmiche,et al.  Butyrate inhibits inflammatory responses through NFkappaB inhibition: implications for Crohn's disease. , 2000, Gut.

[41]  M. M. Mu,et al.  The inhibitory action of butyrate on lipopolysaccharide-induced nitric oxide production in RAW 264.7 murine macrophage cells , 2000, Journal of endotoxin research.

[42]  J. Mariadason,et al.  Effect of short-chain fatty acids on paracellular permeability in Caco-2 intestinal epithelium model. , 1997, The American journal of physiology.

[43]  D. Granger,et al.  Pathophysiology of gastrointestinal mucosal permeability , 1990, Journal of internal medicine. Supplement.

[44]  M. Nyman,et al.  Fermentation of dietary fibre components in the rat intestinal tract , 1982, British Journal of Nutrition.

[45]  D. Chivers,et al.  Morphology of the gastrointestinal tract in primates: Comparisons with other mammals in relation to diet , 1980, Journal of morphology.

[46]  T. Miller,et al.  Intrinsic control of colonic blood flow and oxygenation. , 1980, The American journal of physiology.

[47]  Hee-Sun Kim,et al.  Anti-inflammatory effects of short chain fatty acids in IFN-γ-stimulated RAW 264.7 murine macrophage cells : Involvement of NF-κB and ERK signaling pathways , 2007 .

[48]  Hee-Sun Kim,et al.  Anti-inflammatory effects of short chain fatty acids in IFN-gamma-stimulated RAW 264.7 murine macrophage cells: involvement of NF-kappaB and ERK signaling pathways. , 2007, International immunopharmacology.

[49]  Kalima Tv Experimental lymphatic obstruction in the ileum. , 1970 .

[50]  T. Kalima Experimental lymphatic obstruction in the ileum. , 1970, Annales chirurgiae et gynaecologiae Fenniae.