Overview on nanostructured membrane in fuel cell applications

Fuel cells are expected to soon become a source of low- to zero-emission power generation for applications in portable technologies and electric vehicles. Allowing development of high quality solid electrolytes and production of smaller fuel cells, significant progress has been made in the development of fuel cell membranes using nanotechnology. Nanostructures have been recognized as critical elements to improve the performance of fuel cell membranes. This paper provides an overview of research and development of nanostructured membranes for different fuel cell applications and focuses on improvement of fuel cell membranes by these nanostructures. Theoretical studies using molecular-scale modeling and simulation of fuel cell membranes have also been included in this review. Other issues regarding the technology limitations, research challenges and future trends are also reviewed.

[1]  M. Pan,et al.  Nafion–zirconia nanocomposite membranes formed via in situ sol–gel process , 2010 .

[2]  S. Paddison,et al.  The effects of backbone conformation on hydration and proton transfer in the 'short-side-chain' perfluorosulfonic acid membrane , 2006 .

[3]  Zhao Dan,et al.  MnO2/SiO2–SO3H nanocomposite as hydrogen peroxide scavenger for durability improvement in proton exchange membranes , 2010 .

[4]  Juin-Yih Lai,et al.  Increases in the proton conductivity and selectivity of proton exchange membranes for direct methanol fuel cells by formation of nanocomposites having proton conducting channels , 2009 .

[5]  E. Ivers-Tiffée,et al.  Granular nanocrystalline zirconia electrolyte layers deposited on porous SOFC cathode substrates , 2009 .

[6]  M. M. Hasani-Sadrabadi,et al.  Characterization of nanohybrid membranes for direct methanol fuel cell applications , 2009 .

[7]  G. Jung,et al.  Nafion/PTFE composite membranes for direct methanol fuel cell applications , 2005 .

[8]  Carl Hägglund,et al.  Nanoscience and nanotechnology for advanced energy systems , 2006 .

[9]  Siti Kartom Kamarudin,et al.  Overview on the challenges and developments of micro-direct methanol fuel cells (DMFC) , 2007 .

[10]  D. Brandell,et al.  Modelling the Nafion® diffraction profile by molecular dynamics simulation , 2010 .

[11]  A. Su,et al.  Preparation and properties of functionalized multiwalled carbon nanotubes/polypropylene nanocomposite bipolar plates for polymer electrolyte membrane fuel cells , 2010 .

[12]  C. Hartnig,et al.  Aqueous pore structure and proton dynamics in solvated Nafion membranes , 2005 .

[13]  F. Niepceron,et al.  Composite fuel cell membranes based on an inert polymer matrix and proton-conducting hybrid silica particles , 2009 .

[14]  M. Amjadi,et al.  Investigation of physical properties and cell performance of Nafion/TiO2 nanocomposite membranes for high temperature PEM fuel cells , 2010 .

[15]  Ermete Antolini,et al.  Alkaline direct alcohol fuel cells , 2010 .

[16]  Athanasios G. Mamalis,et al.  Nanotechnology and nanostructured materials: trends in carbon nanotubes , 2004 .

[17]  Suli Wang,et al.  Nafion® and nano-size TiO2–SO42− solid superacid composite membrane for direct methanol fuel cell , 2008 .

[18]  D. Hofmann,et al.  Theoretical simulations of proton conductivity: Basic principles for improving the proton conductor , 2010 .

[19]  Ki-Hyun Kim,et al.  Characterization of polymer-layered silicate nanocomposite membranes for direct methanol fuel cells , 2004 .

[20]  A. Kannan,et al.  Development of carbon nanotubes based gas diffusion layers by in situ chemical vapor deposition process for proton exchange membrane fuel cells , 2009 .

[21]  T. Zhao,et al.  Poly (vinyl alcohol)/3-(trimethylammonium) propyl-functionalized silica hybrid membranes for alkaline direct ethanol fuel cells , 2010 .

[22]  G. Gebel,et al.  Structural evolution of water swollen perfluorosulfonated ionomers from dry membrane to solution , 2000 .

[23]  T. Xu,et al.  Novel silica/poly(2,6-dimethyl-1,4-phenylene oxide) hybrid anion-exchange membranes for alkaline fuel cells: Effect of heat treatment , 2009 .

[24]  Sheng Wang,et al.  Carbon nanotubes based gas diffusion layers in direct methanol fuel cells , 2010 .

[25]  E. Spohr,et al.  MD simulations of proton transport along a model Nafion surface decorated with sulfonate groups , 2006 .

[26]  A. M. Chaparro,et al.  Study of electrochemical instabilities of PEMFC electrodes in aqueous solution by means of membrane inlet mass spectrometry , 2006 .

[27]  Sundara Ramaprabhu,et al.  Performance of polymer electrolyte membrane fuel cells with carbon nanotubes as oxygen reduction catalyst support material , 2005 .

[28]  H.-G. Haubold,et al.  Nano structure of NAFION: a SAXS study , 2001 .

[29]  Minoru Inaba,et al.  Gas crossover and membrane degradation in polymer electrolyte fuel cells , 2006 .

[30]  Ned Djilali,et al.  Computational modelling of polymer electrolyte membrane (PEM) fuel cells: Challenges and opportunities , 2007 .

[31]  Detlef Stolten,et al.  Materials, manufacturing technology and costs of fuel cell membranes☆ , 2010 .

[32]  Jiujun Zhang,et al.  Preparation and performance of nano silica/Nafion composite membrane for proton exchange membrane fuel cells , 2008 .

[33]  Silvia Curteanu,et al.  The neural networks based modeling of a polybenzimidazole-based polymer electrolyte membrane fuel cell: Effect of temperature , 2009 .

[34]  Abu Bakar Mohamad,et al.  Nafion / Silicon oxide / phosphotungstic acid nanocomposite membrane with enhanced proton conductivity. , 2009 .

[35]  T. Gierke,et al.  Ion transport and clustering in nafion perfluorinated membranes , 1983 .

[36]  José Manuel Andújar,et al.  Fuel cells: History and updating. A walk along two centuries , 2009 .

[37]  S. Yen,et al.  Performance of direct methanol fuel cell using carbon nanotube-supported Pt–Ru anode catalyst with controlled composition , 2006 .

[38]  Manuel Maréchal,et al.  From polymer chemistry to membrane elaboration: A global approach of fuel cell polymeric electrolytes , 2006 .

[39]  Pavel G. Khalatur,et al.  Atomistic and mesoscale simulation of polymer electrolyte membranes based on sulfonated poly(ether ether ketone) , 2010 .

[40]  S. Chirachanchai,et al.  Sulfonated montmorillonite/sulfonated poly(ether ether ketone) (SMMT/SPEEK) nanocomposite membrane for direct methanol fuel cells (DMFCs) , 2008 .

[41]  Chun–Chen Yang,et al.  Direct methanol fuel cell based on poly(vinyl alcohol)/titanium oxide nanotubes/poly(styrene sulfonic acid) (PVA/nt-TiO2/PSSA) composite polymer membrane , 2010 .

[42]  A. Yu,et al.  Multiscale modeling and simulation of polymer nanocomposites , 2008 .

[43]  Shuo-Jen Lee,et al.  Preparation and properties of carbon nanotube/polypropylene nanocomposite bipolar plates for polymer electrolyte membrane fuel cells , 2008 .

[44]  O. Borodin,et al.  Modeling of enhanced penetrant diffusion in nanoparticle-polymer composite membranes , 2006 .

[45]  H. Ha,et al.  Nano-silica layered composite membranes prepared by PECVD for direct methanol fuel cells , 2004 .

[46]  S. Holdcroft,et al.  Transport properties of composite membranes containing silicon dioxide and Nafion , 2008 .

[47]  M. Pan,et al.  Self-assembled Nafion®/metal oxide nanoparticles hybrid proton exchange membranes , 2010 .

[48]  K. Jeng,et al.  Characterization and enhancement of carbon nanotube-supported PtRu electrocatalyst for direct methanol fuel cell applications , 2008 .

[49]  Molecular structure and transport dynamics in Nafion and sulfonated poly(ether ether ketone ketone) membranes , 2009 .

[50]  Carsten Agert,et al.  Anhydrous proton conducting membranes based on electron-deficient nanoparticles/PBI-OO/PFSA composites for high-temperature PEMFC , 2009 .

[51]  G. Anilkumar,et al.  Proton conducting phosphated zirconia–sulfonated polyether sulfone nanohybrid electrolyte for low humidity, wide-temperature PEMFC operation , 2006 .

[52]  S. Chan,et al.  Composite Nafion® membrane embedded with hybrid nanofillers for promoting direct methanol fuel cell performance , 2008 .

[53]  C. Detrembleur,et al.  Beneficial effect of carbon nanotubes on the performances of Nafion membranes in fuel cell applications , 2007 .

[54]  S. Pitchumani,et al.  Novel organic-inorganic composite polymer-electrolyte membranes for DMFCs , 2009 .

[55]  Sang‐young Lee,et al.  Control of nanoparticle dispersion in SPAES/SiO2 composite proton conductors and its influence on DMFC membrane performance , 2009 .

[56]  Ying‐Ling Liu,et al.  Preparation and properties of nanocomposite membranes of polybenzimidazole/sulfonated silica nanoparticles for proton exchange membranes , 2009 .

[57]  Alexandros Katsaounis,et al.  The effect of membrane thickness on the conductivity of Nafion , 2006 .

[58]  Dennis Y.C. Leung,et al.  Theoretical analysis of reversible solid oxide fuel cell based on proton-conducting electrolyte , 2008 .

[59]  Y. Sung,et al.  A Pd-impregnated nanocomposite Nafion membrane for use in high-concentration methanol fuel in DMFC , 2003 .

[60]  Hongfeng Xu,et al.  Hybrid Nafion–inorganic oxides membrane doped with heteropolyacids for high temperature operation of proton exchange membrane fuel cell , 2006 .

[61]  S. Ahadian,et al.  A novel computational approach to study proton transfer in perfluorosulfonic acid membranes , 2010 .

[62]  Guillermo Rus,et al.  Nanotechnology for sustainable energy , 2009 .

[63]  Ji Young Kim,et al.  Surface-modified Nafion membrane by trioctylphosphine-stabilized palladium nanoparticles for DMFC applications , 2009 .

[64]  Enrico Drioli,et al.  Preparation and characterization of new non-fluorinated polymeric and composite membranes for PEMFCs , 2010 .

[65]  V. Faucheux,et al.  Fabrication of thin and dense nano-crystalline membranes on porous substrates , 2008 .

[66]  M. M. Hasani-Sadrabadi,et al.  Novel high-performance nanocomposite proton exchange membranes based on poly (ether sulfone) , 2010 .

[67]  J. Chandradass,et al.  Fine tuning of gadolinium doped ceria electrolyte nanoparticles via reverse microemulsion process , 2009 .

[68]  Y. Shul,et al.  Proton-conducting nanocomposite membranes based on P(VDF-co-CTFE)-g-PSSA graft copolymer and TiO2–PSSA nanoparticles , 2011 .

[69]  M. Eikerling,et al.  Ab initio study of surface-mediated proton transfer in polymer electrolyte membranes , 2008 .

[70]  J. Fergus Electrolytes for solid oxide fuel cells , 2006 .

[71]  Y. Shu,et al.  Sulfonated poly(ether sulfone) (SPES)/boron phosphate (BPO4) composite membranes for high-temperature proton-exchange membrane fuel cells , 2009 .

[72]  P. Jannasch Recent developments in high-temperature proton conducting polymer electrolyte membranes , 2003 .

[73]  Chun–Chen Yang,et al.  Preparation of the acidic PVA/MMT nanocomposite polymer membrane for the direct methanol fuel cell (DMFC) , 2009 .

[74]  H. Bhunia,et al.  Thermal stability and proton conductivity of silane based nanostructured composite membranes , 2008 .

[75]  B. Smitha,et al.  Solid polymer electrolyte membranes for fuel cell applications¿a review , 2005 .

[76]  L. Pisani,et al.  An analytical model for the conductivity of polymeric sulfonated membranes , 2008 .

[77]  Jingyu Xi,et al.  A nanocomposite proton exchange membrane based on PVDF, poly(2-acrylamido-2-methyl propylene sulfonic acid), and nano-Al2O3 for direct methanol fuel cells , 2006 .

[78]  Hong Li,et al.  Preparation of polysiloxane/perfluorosulfonic acid nanocomposite membranes in supercritical carbon dioxide system for direct methanol fuel cell , 2009 .

[79]  R. Kannan,et al.  Domain size manipulation of perflouorinated polymer electrolytes by sulfonic acid-functionalized MWCNTs to enhance fuel cell performance. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[80]  Chun–Chen Yang,et al.  Enhanced performance of a direct methanol alkaline fuel cell (DMAFC) using a polyvinyl alcohol/fumed silica/KOH electrolyte , 2010 .

[81]  H. Struchtrup,et al.  Thermodynamic considerations on the stability of water in Nafion , 2007 .

[82]  Q. Zhen,et al.  Processing of dense nanocrystalline Bi2O3-Y2O3 solid electrolyte , 2005 .

[83]  H. Keul,et al.  Sulfonated poly( ether ether ketone)-silica membranes doped with phosphotungstic acid. Morphology and proton conductivity , 2009 .

[84]  Chun–Chen Yang,et al.  Quaternized poly(vinyl alcohol)/alumina composite polymer membranes for alkaline direct methanol fuel cells , 2010 .

[85]  Yi-Ming Sun,et al.  Using silica nanoparticles for modifying sulfonated poly(phthalazinone ether ketone) membrane for direct methanol fuel cell : A significant improvement on cell performance , 2006 .

[86]  M. Pan,et al.  Self-assembly of Nafion molecules onto silica nanoparticles formed in situ through sol-gel process. , 2008, Journal of colloid and interface science.

[87]  Y. Lee,et al.  Preparation of high-performance polymer electrolyte nanocomposites through nanoscale silica particle dispersion , 2010 .

[88]  Y. Hudiono,et al.  Porous layered oxide/Nafion® nanocomposite membranes for direct methanol fuel cell applications , 2009 .

[89]  S. Woo,et al.  Development of enhanced materials for direct-methanol fuel cell by combinatorial method and nanoscience , 2003 .

[90]  Qingfeng Li,et al.  Water uptake and acid doping of polybenzimidazoles as electrolyte membranes for fuel cells , 2004 .

[91]  Erik Kjeang,et al.  A Parametric Study of Methanol Crossover in a Flowing Electrolyte Direct Methanol Fuel Cell , 2006 .

[92]  Zhongyi Jiang,et al.  A facile surface modification of Nafion membrane by the formation of self-polymerized dopamine nano-layer to enhance the methanol barrier property , 2009 .

[93]  Y. Lee,et al.  Surfactant-assisted polymer electrolyte nanocomposite membranes for fuel cells , 2009 .

[94]  S. Haile Fuel cell materials and components , 2003 .

[95]  A. Zand,et al.  Synthesis and performance evaluation of a polymer mesh supported proton exchange membrane for fuel cell applications , 2010 .

[96]  Dong-Ryul Shin,et al.  Preparation and performance of a Nafion®/montmorillonite nanocomposite membrane for direct methanol fuel cell , 2003 .

[97]  Yi-Ming Sun,et al.  Proton exchange membranes modified with sulfonated silica nanoparticles for direct methanol fuel cells , 2007 .

[98]  L. Gubler,et al.  Trends for fuel cell membrane development , 2010 .

[99]  Y. Lee,et al.  Nafion® nanocomposite membranes: Effect of fluorosurfactants on hydrophobic silica nanoparticle dispersion and direct methanol fuel cell performance , 2009 .

[100]  T. He,et al.  The effect of Fe doping on the properties of SOFC electrolyte YSZ , 2008 .

[101]  I. Honma,et al.  Organic/inorganic nano-composites for high temperature proton conducting polymer electrolytes , 2003 .

[102]  S. Liao,et al.  Theoretical study on sulfonated and phosphonated poly[(aryloxy)phosphazenes] as proton-conducting membranes for fuel cell applications , 2009 .

[103]  Chang Houn Rhee,et al.  Nafion/Sulfonated Montmorillonite Composite: A New Concept Electrolyte Membrane for Direct Methanol Fuel Cells , 2005 .

[104]  H. Giesche,et al.  Alumina/cerium oxide nano-composite electrolyte for solid oxide fuel cell applications , 2008 .

[105]  V. Hacker,et al.  Direct methanol–air fuel cells with membranes plus circulating electrolyte , 2001 .

[106]  Greg Tegart,et al.  Energy and nanotechnologies: Priority areas for Australia's future , 2009 .

[107]  L. Robeson,et al.  Polymer nanotechnology: Nanocomposites , 2008 .

[108]  C. Siegel Review of computational heat and mass transfer modeling in polymer-electrolyte-membrane (PEM) fuel cells , 2008 .

[109]  Siti Kartom Kamarudin,et al.  Overview on the application of direct methanol fuel cell (DMFC) for portable electronic devices , 2009 .

[110]  H. Pu,et al.  Organic/inorganic composite membranes based on polybenzimidazole and nano-SiO2 , 2009 .

[111]  Siti Kartom Kamarudin,et al.  Overview of hybrid membranes for direct-methanol fuel-cell applications , 2010 .

[112]  Ching An Huang,et al.  Study of poly(vinyl alcohol)/titanium oxide composite polymer membranes and their application on alkaline direct alcohol fuel cell , 2008 .

[113]  C. Sandu,et al.  Nanoporous YSZ film in electrolyte membrane of Micro-Solid Oxide Fuel Cell , 2010 .

[114]  G. Choi,et al.  Open-circuit voltage of ceria-based thin film SOFC supported on nano-porous alumina , 2007 .

[115]  K. Sundmacher,et al.  Mass, charge and energy transport phenomena in a polymer electrolyte membrane (PEM) used in a direct methanol fuel cell (DMFC): Modelling and experimental validation of fluxes , 2006 .

[116]  A. Kornyshev,et al.  Proton transfer in a single pore of a polymer electrolyte membrane , 2001 .

[117]  C. Larchet,et al.  The influence of absorbed methanol on the swelling and conductivity properties of cation-exchange membranes , 2008 .

[118]  Jennifer L. M. Rupp,et al.  Review on microfabricated micro-solid oxide fuel cell membranes , 2009 .

[119]  Ravindra Datta,et al.  Synthesis and characterization of Nafion®-MO2 (M = Zr, Si, Ti) nanocomposite membranes for higher temperature PEM fuel cells , 2005 .

[120]  Juin-Yih Lai,et al.  Preparation and applications of Nafion-functionalized multiwalled carbon nanotubes for proton exchange membrane fuel cells , 2010 .

[121]  Sandip Mazumder,et al.  Numerical investigation of the effect of cathode catalyst layer structure and composition on polymer electrolyte membrane fuel cell performance , 2008 .