Phase field simulations of ferroelectrics domain structures in PbZrxTi1−xO3 bilayers

[1]  N. Bassiri‐Gharb,et al.  Enhanced dielectric and piezoelectric response in PZT superlattice-like films by leveraging spontaneous Zr/Ti gradient formation , 2012 .

[2]  S. Alpay,et al.  Theory of giant electromechanical response from ferroelectric bilayers with polydomain structures due to interlayer and interdomain coupling. , 2010, Physical review letters.

[3]  I. Takeuchi,et al.  Labile Ferroelastic Nanodomains in Bilayered Ferroelectric Thin Films , 2009 .

[4]  V. Nagarajan,et al.  Ferroelastic domains in bilayered ferroelectric thin films , 2008 .

[5]  A. Tagantsev Landau Expansion for Ferroelectrics: Which Variable to Use? , 2008 .

[6]  A. Saxena,et al.  Influence of interfacial dislocations on hysteresis loops of ferroelectric films , 2008 .

[7]  Z. K. Liu,et al.  Domain stability of PbTiO3 thin films under anisotropic misfit strains: Phase-field simulations , 2008 .

[8]  Q. Jia,et al.  Computer simulation of ferroelectric domain structures in epitaxial BiFeO3 thin films , 2008 .

[9]  A. Roytburd,et al.  Thermodynamic analysis and phase field modeling of domain structures in bilayer ferroelectric thin films , 2008 .

[10]  Yue Zheng,et al.  Depolarization in modeling nano-scale ferroelectrics using the Landau free energy functional , 2008 .

[11]  Andrei Artemev,et al.  Phase-field modeling of domain structure of confined nanoferroelectrics. , 2008, Physical review letters.

[12]  D. Tenne,et al.  Interfacial coherency and ferroelectricity of BaTiO3∕SrTiO3 superlattice films , 2007 .

[13]  John Wang,et al.  Ferroelectric and dielectric behavior of heterolayered PZT thin films , 2007 .

[14]  M. Alexe,et al.  Thickness-driven antiferroelectric-to-ferroelectric phase transition of thin PbZrO3 layers in epitaxial PbZrO3∕Pb(Zr0.8Ti0.2)O3 multilayers , 2007 .

[15]  D. Tenne,et al.  Prediction of ferroelectricity in BaTiO3∕SrTiO3 superlattices with domains , 2007 .

[16]  S. Muensit,et al.  Effect of Zr/Ti ratio on the microstructure and ferroelectric properties of lead zirconate titanate thin films , 2007 .

[17]  Philippe Ghosez,et al.  Tailoring the Properties of Artificially Layered Ferroelectric Superlattices , 2007 .

[18]  S. Alpay,et al.  Highly tunable and temperature insensitive multilayer barium strontium titanate films , 2007 .

[19]  M. Alexe,et al.  Structure and properties of epitaxial ferroelectric PbZr0.4Ti0.6O3∕PbZr0.6Ti0.4O3 superlattices grown on SrTiO3 (001) by pulsed laser deposition , 2007 .

[20]  Q. Jia,et al.  Structural evidence for enhanced polarization in a commensurate short-period BaTiO3∕SrTiO3 superlattice , 2006 .

[21]  V. Gopalan,et al.  Phase transitions and domain structures in strained pseudocubic (100)SrTiO3thin films , 2006 .

[22]  S. Alpay,et al.  Dielectric anomaly due to electrostatic coupling in ferroelectric-paraelectric bilayers and multilayers , 2005 .

[23]  H. Christen,et al.  Strong polarization enhancement in asymmetric three-component ferroelectric superlattices , 2005, Nature.

[24]  Long-Qing Chen,et al.  Three‐Dimensional Computer Simulation of Ferroelectric Domain Formation , 2005 .

[25]  J. Xue,et al.  Heterolayered lead zirconate titanate thin films of giant polarization , 2004 .

[26]  E. Longo,et al.  Improvement of the dielectric and ferroelectric properties in superlattice structure of Pb(Zr,Ti)O3 thin films grown by a chemical solution route , 2004 .

[27]  K. Rabe,et al.  Epitaxially strained [001]-(PbTiO$_3$)$_1$(PbZrO$_3$)$_1$ superlattice and PbTiO$_3$ from first principles , 2003, cond-mat/0312075.

[28]  F. G. Shin,et al.  Theory of interface structures in double-layer ferroelectrics , 2003 .

[29]  Zi-kui Liu,et al.  Effect of external mechanical constraints on the phase diagram of epitaxial PbZr1−xTixO3 thin films—thermodynamic calculations and phase-field simulations , 2003 .

[30]  Long-qing Chen,et al.  Effect of interfacial dislocations on ferroelectric phase stability and domain morphology in a thin film—a phase-field model , 2003 .

[31]  B. Cheng,et al.  Dielectric properties of Pb(Zr20Ti80)O3/Pb(Zr80Ti20)O3 multilayered thin films prepared by rf magnetron sputtering , 2003 .

[32]  Rainer Waser,et al.  Phase diagrams and physical properties of single-domain epitaxialPb(Zr1−xTix)O3thin films , 2003 .

[33]  Shenyang Y. Hu,et al.  Effect of electrical boundary conditions on ferroelectric domain structures in thin films , 2002 .

[34]  Shenyang Y. Hu,et al.  Effect of substrate constraint on the stability and evolution of ferroelectric domain structures in thin films , 2002 .

[35]  A. Khachaturyan,et al.  DEVELOPMENT OF FERROELECTRIC MIXED STATES IN A RANDOM FIELD OF STATIC DEFECTS , 1998 .

[36]  A. Tagantsev,et al.  Effect of mechanical boundary conditions on phase diagrams of epitaxial ferroelectric thin films , 1998 .

[37]  Jie Shen,et al.  Applications of semi-implicit Fourier-spectral method to phase field equations , 1998 .

[38]  Nambu,et al.  Domain formation and elastic long-range interaction in ferroelectric perovskites. , 1994, Physical review. B, Condensed matter.

[39]  Wang,et al.  Phenomenological study of the size effect on phase transitions in ferroelectric particles. , 1994, Physical review. B, Condensed matter.

[40]  Leslie E. Cross,et al.  Thermodynamic theory of the lead zirconate-titanate solid solution system, part III: Curie constant and sixth-order polarization interaction dielectric stiffness coefficients , 1989 .

[41]  E. Furman,et al.  Thermodynamic theory of the lead zirconate-titanate solid solution system, part I: Phenomenology , 1989 .

[42]  Leslie E. Cross,et al.  Thermodynamic theory of PbTiO3 , 1987 .

[43]  A. Tagantsev The role of the background dielectric susceptibility in uniaxial ferroelectrics , 1986 .

[44]  A. N. Stroh Steady State Problems in Anisotropic Elasticity , 1962 .

[45]  C. Kittel Introduction to solid state physics , 1954 .

[46]  T. C. T. Ting,et al.  Anisotropic Elasticity: Theory and Applications , 1996 .

[47]  A. G. Khachaturi︠a︡n Theory of structural transformations in solids , 1983 .