Computing the Eigenvectors of Nonsymmetric Tridiagonal Matrices
暂无分享,去创建一个
[1] Jack J. Dongarra,et al. Algorithm 710: FORTRAN subroutines for computing the eigenvalues and eigenvectors of a general matrix by reduction to general tridiagonal form , 1990, TOMS.
[2] Roland W. Freund,et al. An Implementation of the Look-Ahead Lanczos Algorithm for Non-Hermitian Matrices , 1993, SIAM J. Sci. Comput..
[3] Beresford N. Parlett,et al. Sensitivity of eigenvalues of an unsymmetric tridiagonal matrix , 2012, Numerische Mathematik.
[4] Charles R. Johnson,et al. Topics in Matrix Analysis , 1991 .
[5] Ilse C. F. Ipsen. Computing an Eigenvector with Inverse Iteration , 1997, SIAM Rev..
[6] David S. Watkins,et al. The transmission of shifts and shift blurring in the QR algorithm , 1996 .
[7] Roger B. Sidje,et al. QRT: A QR-Based Tridiagonalization Algorithm for Nonsymmetric Matrices , 2005, SIAM J. Matrix Anal. Appl..
[8] Dario Bini,et al. The Ehrlich-Aberth Method for the Nonsymmetric Tridiagonal Eigenvalue Problem , 2005, SIAM J. Matrix Anal. Appl..
[9] Lionello Pasquini,et al. Accurate computation of the zeros of the generalized Bessel polynomials , 2000, Numerische Mathematik.
[10] J. G. F. Francis,et al. The QR Transformation A Unitary Analogue to the LR Transformation - Part 1 , 1961, Comput. J..
[11] G. Stewart,et al. Perturbation Analyses for the QR Factorization , 1997, SIAM J. Matrix Anal. Appl..
[12] R. T. Gregory,et al. On the reduction of an arbitrary real square matrix to tridiagonal form , 1964 .
[13] S. Kaniel,et al. The ELR Method for Computing the Eigenvalues of a General Matrix , 1981 .
[14] W. Chu,et al. Eigenvectors of tridiagonal matrices of Sylvester type , 2008 .
[15] B. Parlett,et al. Forward Instability of Tridiagonal QR , 1993, SIAM J. Matrix Anal. Appl..
[16] J. G. F. Francis,et al. The QR Transformation - Part 2 , 1962, Comput. J..