Computing the Eigenvectors of Nonsymmetric Tridiagonal Matrices

The computation of the eigenvalue decomposition of matrices is one of the most investigated problems in numerical linear algebra. In particular, real nonsymmetric tridiagonal eigenvalue problems arise in a variety of applications. In this paper the problem of computing an eigenvector corresponding to a known eigenvalue of a real nonsymmetric tridiagonal matrix is considered, developing an algorithm that combines part of a $$QR$$ sweep and part of a $$QL$$ sweep, both with the shift equal to the known eigenvalue. The numerical tests show the reliability of the proposed method.

[1]  Jack J. Dongarra,et al.  Algorithm 710: FORTRAN subroutines for computing the eigenvalues and eigenvectors of a general matrix by reduction to general tridiagonal form , 1990, TOMS.

[2]  Roland W. Freund,et al.  An Implementation of the Look-Ahead Lanczos Algorithm for Non-Hermitian Matrices , 1993, SIAM J. Sci. Comput..

[3]  Beresford N. Parlett,et al.  Sensitivity of eigenvalues of an unsymmetric tridiagonal matrix , 2012, Numerische Mathematik.

[4]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[5]  Ilse C. F. Ipsen Computing an Eigenvector with Inverse Iteration , 1997, SIAM Rev..

[6]  David S. Watkins,et al.  The transmission of shifts and shift blurring in the QR algorithm , 1996 .

[7]  Roger B. Sidje,et al.  QRT: A QR-Based Tridiagonalization Algorithm for Nonsymmetric Matrices , 2005, SIAM J. Matrix Anal. Appl..

[8]  Dario Bini,et al.  The Ehrlich-Aberth Method for the Nonsymmetric Tridiagonal Eigenvalue Problem , 2005, SIAM J. Matrix Anal. Appl..

[9]  Lionello Pasquini,et al.  Accurate computation of the zeros of the generalized Bessel polynomials , 2000, Numerische Mathematik.

[10]  J. G. F. Francis,et al.  The QR Transformation A Unitary Analogue to the LR Transformation - Part 1 , 1961, Comput. J..

[11]  G. Stewart,et al.  Perturbation Analyses for the QR Factorization , 1997, SIAM J. Matrix Anal. Appl..

[12]  R. T. Gregory,et al.  On the reduction of an arbitrary real square matrix to tridiagonal form , 1964 .

[13]  S. Kaniel,et al.  The ELR Method for Computing the Eigenvalues of a General Matrix , 1981 .

[14]  W. Chu,et al.  Eigenvectors of tridiagonal matrices of Sylvester type , 2008 .

[15]  B. Parlett,et al.  Forward Instability of Tridiagonal QR , 1993, SIAM J. Matrix Anal. Appl..

[16]  J. G. F. Francis,et al.  The QR Transformation - Part 2 , 1962, Comput. J..