A simple tuning method of fractional order PIλ-PDμ controllers for time delay systems.

In this paper, a practical tuning technique is presented to obtain all stabilizing fractional order PIλ-PDμ controller parameters ensuring stability for processes with time delay using the stability boundary locus and the weighted geometrical center (WGC) methods. The method is based on obtaining of stability regions plotted by using the stability boundary locus in the (kd,kf)-plane and (kp,ki)-plane, and then computing the weighted geometrical centers of these regions. After obtaining PDμ controller parameters using the WGC method from the stability region, desired PIλ controller parameters are computed by the same procedure. This paper provides a simple and efficient tuning method to obtain stabilizing parameters of PIλ-PDμ controller for time delay systems. The important advantages of the method are both calculating of controller parameters without using any complex solution methods and ensuring the stability of closed loop system. Illustrative examples are given to demonstrate the benefits and the simplicity of the proposed method.

[1]  D. P. Atherton,et al.  Automatic tuning of optimum PID controllers , 1993 .

[2]  Ibrahim Kaya,et al.  PI-PD controllers for controlling stable processes with inverse response and dead time , 2016 .

[3]  YangQuan Chen,et al.  Fractional order control - A tutorial , 2009, 2009 American Control Conference.

[4]  Tarun Kumar Rawat,et al.  Fractional Order Digital Differentiator Design Based on Power Function and Least squares , 2016 .

[5]  Norbert Hohenbichler,et al.  All stabilizing PID controllers for time delay systems , 2009, Autom..

[6]  Robin De Keyser,et al.  A novel auto-tuning method for fractional order PI/PD controllers. , 2016, ISA transactions.

[7]  Karl Johan Åström,et al.  PID Controllers: Theory, Design, and Tuning , 1995 .

[8]  André R. Fioravanti,et al.  PID controller design for fractional-order systems with time delays , 2012, Syst. Control. Lett..

[9]  Prabin Kumar Padhy,et al.  Relay based PI-PD design for stable and unstable FOPDT processes , 2006, Comput. Chem. Eng..

[10]  Y. Chen,et al.  Tuning fractional order proportional integral controllers for fractional order systems , 2010 .

[11]  Manjeet Kumar,et al.  Efficient Design of Digital FIR Differentiator using $L_1$-Method , 2016 .

[12]  Nusret Tan,et al.  Computation of stabilizing PI and PID controllers for processes with time delay. , 2005, ISA transactions.

[13]  M. Chidambaram,et al.  Set Point Weighted Pid Controllers For Unstable Systems , 2005 .

[14]  I. Petras,et al.  The fractional - order controllers: Methods for their synthesis and application , 2000, math/0004064.

[15]  Tore Hägglund,et al.  The future of PID control , 2000 .

[16]  T. Rawat,et al.  Optimal nonlinear system identification using fractional delay second-order volterra system , 2017 .

[17]  Vineet Kumar,et al.  Nonlinear adaptive fractional order fuzzy PID control of a 2-link planar rigid manipulator with payload , 2017, J. Frankl. Inst..

[18]  Xin-Ping Guan,et al.  Stability analysis for fractional-order PD controlled delayed systems , 2016, J. Frankl. Inst..

[19]  R. Padma Sree,et al.  A simple method of tuning PID controllers for integrator/dead-time processes , 2003, Comput. Chem. Eng..

[20]  Duarte Valério,et al.  Tuning of fractional PID controllers with Ziegler-Nichols-type rules , 2006, Signal Process..

[21]  Subhojit Ghosh,et al.  Real time implementation of fractional order PID controllers for a magnetic levitation plant , 2017 .

[22]  Serdar Ethem Hamamci An Algorithm for Stabilization of Fractional-Order Time Delay Systems Using Fractional-Order PID Controllers , 2007, IEEE Transactions on Automatic Control.

[23]  Zhe Gao,et al.  Robust stabilization criterion of fractional-order controllers for interval fractional-order plants , 2015, Autom..

[24]  Weng Khuen Ho,et al.  Tuning of PID controllers based on gain and phase margin specifications , 1995, Autom..

[25]  Y. Chen,et al.  Identification and tuning fractional order proportional integral controllers for time delayed systems with a fractional pole , 2013 .

[26]  J. Ackermann,et al.  Synthesis of robust PID controllers for time delay systems , 2003, 2003 European Control Conference (ECC).

[27]  I. Podlubny Fractional-order systems and PIλDμ-controllers , 1999, IEEE Trans. Autom. Control..

[28]  Tarun Kumar Rawat,et al.  Optimal fractional delay-IIR filter design using cuckoo search algorithm. , 2015, ISA transactions.

[29]  A. J. Calderón,et al.  On Fractional PIλ Controllers: Some Tuning Rules for Robustness to Plant Uncertainties , 2004 .

[30]  Y. Chen,et al.  Fractional Order Motion Controls , 2012 .

[31]  M. Chidambaram,et al.  Set-point weighted PID controllers for unstable systems , 2000, J. Frankl. Inst..

[32]  Mircea Dulău,et al.  Fractional Order Controllers Versus Integer Order Controllers , 2017 .

[33]  M. Chidambaram SET POINT WEIGHTED PI/PID CONTROLLERS , 2000 .

[34]  Tarun Kumar Rawat,et al.  Optimal design of FIR fractional order differentiator using cuckoo search algorithm , 2015, Expert Syst. Appl..

[35]  R. Padma Sree,et al.  A simple method of tuning PID controllers for stable and unstable FOPTD systems , 2004, Comput. Chem. Eng..

[36]  Lirong Zhai,et al.  Stabilization criterion of fractional-order PD μ controllers for interval fractional-order plants with one fractional-order term , 2016, CCC 2016.

[37]  Somanath Majhi,et al.  Limitations of PID controllers , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[38]  Nusret Tan,et al.  Computation of stabilizing PI-PD controllers , 2009 .

[39]  Ibrahim Kaya,et al.  A PI-PD controller design for control of unstable and integrating processes. , 2003, ISA transactions.

[40]  J. G. Ziegler,et al.  Optimum Settings for Automatic Controllers , 1942, Journal of Fluids Engineering.

[41]  Igor Podlubny,et al.  Fractional-order systems and PI/sup /spl lambda//D/sup /spl mu//-controllers , 1999 .