Periodic dynamics of coupled cell networks I: rigid patterns of synchrony and phase relations
暂无分享,去创建一个
[1] J. Zukas. Introduction to the Modern Theory of Dynamical Systems , 1998 .
[2] John W. Aldis. A Polynomial Time Algorithm to Determine Maximal Balanced Equivalence Relations , 2008, Int. J. Bifurc. Chaos.
[3] Ian Stewart,et al. Patterns of Synchrony in Coupled Cell Networks with Multiple Arrows , 2005, SIAM J. Appl. Dyn. Syst..
[4] M. Golubitsky,et al. Models of central pattern generators for quadruped locomotion II. Secondary gaits , 2001, Journal of mathematical biology.
[5] Lambros Lambrou,et al. Combinatorial Dynamics , 2004 .
[6] C. Desoer,et al. Global inverse function theorem , 1972 .
[7] Martin Golubitsky,et al. Stability Computations for Nilpotent Hopf bifurcations in Coupled Cell Systems , 2007, Int. J. Bifurc. Chaos.
[8] Ian Stewart,et al. Enumeration of Homogeneous Coupled Cell Networks , 2005, Int. J. Bifurc. Chaos.
[9] Martin Golubitsky,et al. Homogeneous three-cell networks , 2006 .
[10] Martin Golubitsky,et al. Nilpotent Hopf Bifurcations in Coupled Cell Systems , 2006, SIAM J. Appl. Dyn. Syst..
[11] Ian Stewart,et al. Periodic dynamics of coupled cell networks II: cyclic symmetry , 2008 .
[12] H. Brandt. Über eine Verallgemeinerung des Gruppenbegriffes , 1927 .
[13] Ian Stewart,et al. Some Curious Phenomena in Coupled Cell Networks , 2004, J. Nonlinear Sci..
[14] W. Gordon. On the Diffeomorphisms of Euclidean Space , 1972 .
[15] Peter Ashwin,et al. THE SYMMETRY PERSPECTIVE: FROM EQUILIBRIUM TO CHAOS IN PHASE SPACE AND PHYSICAL SPACE (Progress in Mathematics 200) , 2003 .
[16] Ian Stewart,et al. Symmetry Groupoids and Admissible Vector Fields for Coupled Cell Networks , 2004 .
[17] Eric Shea-Brown,et al. Winding Numbers and Average Frequencies in Phase Oscillator Networks , 2006, J. Nonlinear Sci..
[18] Ian Stewart,et al. Linear equivalence and ODE-equivalence for coupled cell networks , 2005 .
[19] Marcus Pivato,et al. Symmetry Groupoids and Patterns of Synchrony in Coupled Cell Networks , 2003, SIAM J. Appl. Dyn. Syst..
[20] M. Golubitsky,et al. Singularities and groups in bifurcation theory , 1985 .
[21] Ralph Abraham,et al. Foundations Of Mechanics , 2019 .
[22] K. Josić,et al. Network architecture and spatio-temporally symmetric dynamics , 2006 .
[23] M. Golubitsky,et al. Models of central pattern generators for quadruped locomotion I. Primary gaits , 2001, Journal of mathematical biology.
[24] M. Golubitsky,et al. Nonlinear dynamics of networks: the groupoid formalism , 2006 .
[25] Fernando Antoneli,et al. Symmetry and Synchrony in Coupled Cell Networks 1: Fixed-Point Spaces , 2006, Int. J. Bifurc. Chaos.
[26] P. J. Higgins. Notes on categories and groupoids , 1971 .
[27] M. Golubitsky,et al. The Symmetry Perspective: From Equilibrium to Chaos in Phase Space and Physical Space , 2002 .
[28] J. Frank Adams,et al. Lectures on Lie groups , 1969 .