Requirements for Coregistration Accuracy in On-Scalp MEG

Recent advances in magnetic sensing has made on-scalp magnetoencephalography (MEG) possible. In particular, optically-pumped magnetometers (OPMs) have reached sensitivity levels that enable their use in MEG. In contrast to the SQUID sensors used in current MEG systems, OPMs do not require cryogenic cooling and can thus be placed within millimetres from the head, enabling the construction of sensor arrays that conform to the shape of an individual’s head. To properly estimate the location of neural sources within the brain, one must accurately know the position and orientation of sensors in relation to the head. With the adaptable on-scalp MEG sensor arrays, this coregistration becomes more challenging than in current SQUID-based MEG systems that use rigid sensor arrays. Here, we used simulations to quantify how accurately one needs to know the position and orientation of sensors in an on-scalp MEG system. The effects that different types of localisation errors have on forward modelling and source estimates obtained by minimum-norm estimation, dipole fitting, and beamforming are detailed. We found that sensor position errors generally have a larger effect than orientation errors and that these errors affect the localisation accuracy of superficial sources the most. To obtain similar or higher accuracy than with current SQUID-based MEG systems, RMS sensor position and orientation errors should be $$< 4\,\hbox {mm}$$<4mm and $$< 10^\circ$$<10∘, respectively.

[1]  Gareth R. Barnes,et al.  The use of anatomical constraints with MEG beamformers , 2003, NeuroImage.

[2]  Natsuhiko Mizutani,et al.  Human magnetoencephalogram measurements using newly developed compact module of high-sensitivity atomic magnetometer , 2015 .

[3]  Chip-Scale Room-Temperature Atomic Magnetometers for Biomedical Measurements , 2011 .

[4]  Gerald S. Russell,et al.  Geodesic photogrammetry for localizing sensor positions in dense-array EEG , 2005, Clinical Neurophysiology.

[5]  M. S. Hämäläinen,et al.  Quantification of the benefit from integrating MEG and EEG data in minimum ℓ2-norm estimation , 2008, NeuroImage.

[6]  M. Elam,et al.  High-T-c superconducting quantum interference device recordings of spontaneous brain activity: Towards high-T-c magnetoencephalography , 2012 .

[7]  M. Romalis,et al.  High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation. , 2002, Physical review letters.

[8]  Olaf Hauk,et al.  Comparison of noise-normalized minimum norm estimates for MEG analysis using multiple resolution metrics , 2011, NeuroImage.

[9]  H. Jasper,et al.  The ten-twenty electrode system of the International Federation. The International Federation of Clinical Neurophysiology. , 1999, Electroencephalography and clinical neurophysiology. Supplement.

[10]  K. Matsuura,et al.  Selective minimum-norm solution of the biomagnetic inverse problem , 1995, IEEE Transactions on Biomedical Engineering.

[11]  Martin Luessi,et al.  MNE software for processing MEG and EEG data , 2014, NeuroImage.

[12]  Sujoy Ghosh Hajra,et al.  Improved Localization Accuracy in Magnetic Source Imaging Using a 3-D Laser Scanner , 2012, IEEE Transactions on Biomedical Engineering.

[13]  A. Dale,et al.  Cortical Surface-Based Analysis II: Inflation, Flattening, and a Surface-Based Coordinate System , 1999, NeuroImage.

[14]  Katsuya Ogata,et al.  Proposal for a new MEG–MRI co-registration: A 3D laser scanner system , 2014, Clinical Neurophysiology.

[15]  H. Cox Resolving power and sensitivity to mismatch of optimum array processors , 1973 .

[16]  Michael P. Weisend,et al.  Multi-sensor magnetoencephalography with atomic magnetometers , 2013, Physics in medicine and biology.

[17]  D. Hoffman,et al.  Magnetoencephalography with an atomic magnetometer , 2006 .

[18]  Anders M. Dale,et al.  A hybrid approach to the Skull Stripping problem in MRI , 2001, NeuroImage.

[19]  W. Drongelen,et al.  Localization of brain electrical activity via linearly constrained minimum variance spatial filtering , 1997, IEEE Transactions on Biomedical Engineering.

[20]  Nikolaus Weiskopf,et al.  Flexible head-casts for high spatial precision MEG , 2017, Journal of Neuroscience Methods.

[21]  C. Michel,et al.  Linear inverse solutions with optimal resolution kernels applied to electromagnetic tomography , 1997, Human brain mapping.

[22]  Florian Willomitzer,et al.  Consequences of EEG electrode position error on ultimate beamformer source reconstruction performance , 2014, Front. Neurosci..

[23]  Cengizhan Ozturk,et al.  Multidimensional Alignment Using the Euclidean Distance Transform , 1997, CVGIP Graph. Model. Image Process..

[24]  J Nurminen,et al.  Effects of sensor calibration, balancing and parametrization on the signal space separation method. , 2008, Physics in medicine and biology.

[25]  Seppo P. Ahlfors,et al.  Assessing and improving the spatial accuracy in MEG source localization by depth-weighted minimum-norm estimates , 2006, NeuroImage.

[26]  H. Jasper Report of the committee on methods of clinical examination in electroencephalography , 1958 .

[27]  A. M. Dale,et al.  A hybrid approach to the skull stripping problem in MRI , 2004, NeuroImage.

[28]  Lutz Trahms,et al.  Optically Pumped Magnetometers for MEG , 2019, Magnetoencephalography.

[29]  Peter C. Hansen,et al.  MEG. An introduction to methods , 2010 .

[30]  A. Dale,et al.  High‐resolution intersubject averaging and a coordinate system for the cortical surface , 1999, Human brain mapping.

[31]  J. Sarvas,et al.  Bioelectromagnetic forward problem: isolated source approach revis(it)ed , 2012, Physics in medicine and biology.

[32]  Monica Fabiani,et al.  Validation of a method for coregistering scalp recording locations with 3D structural MR images , 2008, Human brain mapping.

[33]  Matthew J. Brookes,et al.  On the Potential of a New Generation of Magnetometers for MEG: A Beamformer Simulation Study , 2016, PloS one.

[34]  Benjamin H. Brinkmann,et al.  Scalp-Recorded EEG Localization in MRI Volume Data , 1998, Brain Topography.

[35]  S. Taulu,et al.  Presentation of electromagnetic multichannel data: The signal space separation method , 2005 .

[36]  Antoine Lutti,et al.  High precision anatomy for MEG , 2014, NeuroImage.

[37]  Svenja Knappe,et al.  Subpicotesla atomic magnetometry with a microfabricated vapour cell , 2007 .

[38]  L. Koessler,et al.  EEG–MRI Co-registration and Sensor Labeling Using a 3D Laser Scanner , 2010, Annals of Biomedical Engineering.

[39]  L. Koessler,et al.  Spatial localization of EEG electrodes , 2007, Neurophysiologie Clinique/Clinical Neurophysiology.

[40]  J. Haueisen,et al.  Influence of tissue resistivities on neuromagnetic fields and electric potentials studied with a finite element model of the head , 1997, IEEE Transactions on Biomedical Engineering.

[41]  Svenja Knappe,et al.  Microfabricated Optically-Pumped Magnetometers for Biomagnetic Applications , 2016 .

[42]  R. Ilmoniemi,et al.  Interpreting magnetic fields of the brain: minimum norm estimates , 2006, Medical and Biological Engineering and Computing.

[43]  Matti Stenroos,et al.  Minimum-norm cortical source estimation in layered head models is robust against skull conductivity error☆☆☆ , 2013, NeuroImage.

[44]  Amber L. Dagel,et al.  Four-channel optically pumped atomic magnetometer for magnetoencephalography. , 2016, Optics express.

[45]  関原 謙介,et al.  Adaptive Spatial Filters for Electromagnetic Brain Imaging , 2008 .

[46]  Christoph Pfeiffer,et al.  Evaluation of realistic layouts for next generation on-scalp MEG: spatial information density maps , 2017, Scientific Reports.

[47]  E. Somersalo,et al.  Visualization of Magnetoencephalographic Data Using Minimum Current Estimates , 1999, NeuroImage.

[48]  Florian Willomitzer,et al.  Improved EEG source localization employing 3D sensing by "Flying Triangulation" , 2013, Optical Metrology.

[49]  R. Stevenson,et al.  The Body and the Beautiful: Health, Attractiveness and Body Composition in Men’s and Women’s Bodies , 2016, PloS one.

[50]  Gökhan Şengül,et al.  Single Camera Photogrammetry System for EEG Electrode Identification and Localization , 2010, Annals of Biomedical Engineering.

[51]  F. Carducci,et al.  Automatic alignment of EEG/MEG and MRI data sets , 2001, Clinical Neurophysiology.

[52]  Jean Gotman,et al.  The influence of electrode location errors on EEG dipole source localization with a realistic head model , 2001, Clinical Neurophysiology.

[53]  Anders M. Dale,et al.  Cortical Surface-Based Analysis I. Segmentation and Surface Reconstruction , 1999, NeuroImage.

[54]  R. Ilmoniemi,et al.  Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain , 1993 .

[55]  T. W. Kornack,et al.  A subfemtotesla multichannel atomic magnetometer , 2003, Nature.

[56]  R. Wakai,et al.  A compact, high performance atomic magnetometer for biomedical applications , 2013, Physics in medicine and biology.

[57]  A. Gramfort,et al.  Mixed-norm estimates for the M/EEG inverse problem using accelerated gradient methods , 2012, Physics in medicine and biology.

[58]  Polina Golland,et al.  A distributed spatio-temporal EEG/MEG inverse solver , 2009, NeuroImage.

[59]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[60]  Bruce Fischl,et al.  FreeSurfer , 2012, NeuroImage.

[61]  Timothy Bardouille,et al.  Faster and improved 3-D head digitization in MEG using Kinect , 2014, Front. Neurosci..

[62]  L. Trahms,et al.  Magnetoencephalography with a chip-scale atomic magnetometer , 2012, Biomedical optics express.

[63]  Matti Stenroos,et al.  Measuring MEG closer to the brain: Performance of on-scalp sensor arrays , 2016, NeuroImage.

[64]  Claus Lamm,et al.  Measurement of 3D electrode coordinates by means of a 3D photogrammetric head digitizer , 2000, NeuroImage.

[65]  Matthew J. Brookes,et al.  A new generation of magnetoencephalography: Room temperature measurements using optically-pumped magnetometers , 2017, NeuroImage.

[66]  Svenja Knappe,et al.  Femtotesla atomic magnetometry in a microfabricated vapor cell. , 2010, Optics express.

[67]  Louis Maillard,et al.  3D handheld laser scanner based approach for automatic identification and localization of EEG sensors , 2010, 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology.

[68]  Daniel S. Margulies,et al.  Prioritizing spatial accuracy in high-resolution fMRI data using multivariate feature weight mapping , 2014, Front. Neurosci..

[69]  Jérémie Mattout,et al.  Multivariate source prelocalization (MSP): Use of functionally informed basis functions for better conditioning the MEG inverse problem , 2005, NeuroImage.

[70]  Robert Oostenveld,et al.  Similarities and differences between on-scalp and conventional in-helmet magnetoencephalography recordings , 2017, PloS one.

[71]  Svenja Knappe,et al.  Magnetoencephalography of Epilepsy with a Microfabricated Atomic Magnetrode , 2014, The Journal of Neuroscience.

[72]  A. Dale,et al.  Improved Localizadon of Cortical Activity by Combining EEG and MEG with MRI Cortical Surface Reconstruction: A Linear Approach , 1993, Journal of Cognitive Neuroscience.

[73]  D. Budker,et al.  Optical magnetometry - eScholarship , 2006, physics/0611246.

[74]  L. Vaina,et al.  Mapping the signal‐to‐noise‐ratios of cortical sources in magnetoencephalography and electroencephalography , 2009, Human brain mapping.

[75]  David Poeppel,et al.  Asymptotic SNR of scalar and vector minimum-variance beamformers for neuromagnetic source reconstruction , 2004, IEEE Transactions on Biomedical Engineering.