Polymer electronic materials: a review of charge transport

This article presents an overview of the charge transport phenomenon in semiconducting polymer materials. In these disordered systems both intrinsic and extrinsic parameters play significant roles. In general, π-electron delocalization, interchain interaction, band gap, carrier density, extent of disorder, morphology and processing of materials determine the electrical and optical properties. The chemical structure, especially the role of side groups, is quite important in both physical and processing properties. The nature of charge carriers and their role in charge transport depend on the structure and morphology of the system. Hence in several semiconducting polymer devices, the correlations among structure, morphology and transport are rather strong. The dependence of carrier mobility on temperature and electric field needs to be understood in the framework of competing models based on carrier hopping, trapping/detrapping and tunneling. Exactly what determines the dispersive/nondispersive, polaronic and correlative transport regimes is yet to be quantified. An understanding of the carrier mobility in semiconducting polymers is necessary to optimize the performance of polymeric electronic devices. Copyright © 2006 Society of Chemical Industry

[1]  Stephen R. Forrest,et al.  Management of singlet and triplet excitons for efficient white organic light-emitting devices , 2006, Nature.

[2]  S. Patil,et al.  High intra-chain hole mobility on molecular wires of ladder type poly(p-phenylenes) , 2006, SPIE Optics + Photonics.

[3]  G. Lanzani,et al.  Photoinduced transient stark spectroscopy in organic semiconductors: a method for charge mobility determination in the picosecond regime. , 2006, Physical review letters.

[4]  D. Moses,et al.  Charge-carrier relaxation dynamics in highly ordered poly(p-phenylene vinylene): Effects of carrier bimolecular recombination and trapping , 2005 .

[5]  M. Michels,et al.  Scaling of current distributions in variable-range hopping transport on two- and three-dimensional lattices , 2005 .

[6]  R. Coehoorn,et al.  Charge-carrier concentration dependence of the hopping mobility in organic materials with Gaussian disorder , 2005 .

[7]  Gilles Horowitz,et al.  High‐Performance Ambipolar Pentacene Organic Field‐Effect Transistors on Poly(vinyl alcohol) Organic Gate Dielectric , 2005 .

[8]  Gang Li,et al.  Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene) , 2005 .

[9]  George G. Malliaras,et al.  An Organic Electronics Primer , 2005 .

[10]  Y. Sheng,et al.  Large magnetoresistance in nonmagnetic π -conjugated semiconductor thin film devices , 2005, cond-mat/0504738.

[11]  M. Baldo,et al.  Yield of singlet excitons in organic light-emitting devices: a double modulation photoluminescence-detected magnetic resonance study. , 2005, Physical review letters.

[12]  Ronald Österbacka,et al.  Charge carrier mobility in regioregular poly(3-hexylthiophene) probed by transient conductivity techniques: A comparative study , 2005 .

[13]  M. Abkowitz,et al.  Low-field charge-carrier hopping transport in energetically and positionally disordered organic materials , 2004 .

[14]  V. Dyakonov,et al.  Trap-limited hole mobility in semiconducting poly(3-hexylthiophene) , 2004 .

[15]  D. Moses,et al.  Fabrication of regioregular poly(3-hexylthiophene) field-effect transistors by dip-coating , 2004 .

[16]  H. H. Lee,et al.  A polymer gate dielectric for high-mobility polymer thin-film transistors and solvent effects , 2004 .

[17]  R. Street,et al.  Kinetics of bias stress and bipolaron formation in polythiophene , 2004, cond-mat/0407504.

[18]  Niyazi Serdar Sariciftci,et al.  Organic solar cells: An overview , 2004 .

[19]  Z. Vardeny,et al.  Confined and delocalized polarons in π-conjugated oligomers and polymers: A study of the effective conjugation length , 2004 .

[20]  M. Wohlgenannt Polarons in π‐Conjugated Semiconductors: Absorption Spectroscopy and Spin‐Dependent Recombination , 2004 .

[21]  Fabio Biscarini,et al.  Spatially correlated charge transport in organic thin film transistors. , 2004, Physical review letters.

[22]  P. Blom,et al.  Unification of the hole transport in polymeric field-effect transistors and light-emitting diodes. , 2003, Physical review letters.

[23]  David Braun,et al.  Electronic injection and conduction processes for polymer devices , 2003 .

[24]  S. Novikov Charge-carrier transport in disordered polymers , 2003, 1303.4910.

[25]  R. Street,et al.  Bipolaron mechanism for bias-stress effects in polymer transistors , 2003 .

[26]  A. Ajayaghosh Donor-acceptor type low band gap polymers: polysquaraines and related systems. , 2003, Chemical Society reviews.

[27]  A. Johansson,et al.  Charge transport in π-conjugated systems , 2003 .

[28]  Y. Yoshida,et al.  Effects of molecular alignment on carrier transport in organic transistors , 2003 .

[29]  M. Michels,et al.  Understanding the doping dependence of the conductivity of conjugated polymers: Dominant role of the increasing density of states and growing delocalization , 2003 .

[30]  P. Heremans,et al.  Weak-field carrier hopping in disordered organic semiconductors: the effects of deep traps and partly filled density-of-states distribution , 2002 .

[31]  C. Dimitrakopoulos,et al.  Organic Thin Film Transistors for Large Area Electronics , 2002 .

[32]  N. Tessler,et al.  Generalized Einstein relation for disordered semiconductors—implications for device performance , 2001, cond-mat/0109432.

[33]  Dago M. de Leeuw,et al.  Charge transport in disordered organic field-effect transistors , 2002 .

[34]  A. Heeger Nobel Lecture: Semiconducting and metallic polymers: The fourth generation of polymeric materials* , 2001 .

[35]  David Beljonne,et al.  Interchain Interactions in Organic π‐Conjugated Materials: Impact on Electronic Structure, Optical Response, and Charge Transport , 2001 .

[36]  M. Pomerantz,et al.  Poly(2-decylthieno[3,4-b]thiophene-4,6-diyl). A new low band gap conducting polymer , 2001 .

[37]  C. Brabec,et al.  2.5% efficient organic plastic solar cells , 2001 .

[38]  C. Brabec,et al.  Plastic Solar Cells , 2001 .

[39]  Krisztian Kohary,et al.  One-dimensional hopping transport in disordered organic solids. I. Analytic calculations , 2001 .

[40]  A. B. Kaiser,et al.  Electronic transport properties of conducting polymers and carbon nanotubes , 2001 .

[41]  H. Sirringhaus,et al.  High-Resolution Ink-Jet Printing of All-Polymer Transistor Circuits , 2000, Science.

[42]  D. Davidov,et al.  The role of traps in polymer-based light-emitting devices , 2000 .

[43]  Gerwin H. Gelinck,et al.  High-performance all-polymer integrated circuits , 2000 .

[44]  Stephen R. Forrest,et al.  The dawn of organic electronics , 2000 .

[45]  Donal D. C. Bradley,et al.  Mobility enhancement in conjugated polymer field-effect transistors through chain alignment in a liquid-crystalline phase , 2000 .

[46]  Jiang,et al.  Two-dimensional electronic excitations in self-assembled conjugated polymer nanocrystals , 2000, Science.

[47]  A R Bishop,et al.  Molecular geometry fluctuation model for the mobility of conjugated polymers. , 2000, Physical review letters.

[48]  E. W. Meijer,et al.  Two-dimensional charge transport in self-organized, high-mobility conjugated polymers , 1999, Nature.

[49]  W. R. Salaneck,et al.  Electroluminescence in conjugated polymers , 1999, Nature.

[50]  David G Lidzey,et al.  Bulk limited conduction in electroluminescent polymer devices , 1998 .

[51]  Paul Ernest Parris,et al.  Essential Role of Correlations in Governing Charge Transport in Disordered Organic Materials , 1998 .

[52]  David H. Dunlap,et al.  Charge-carrier transport in disordered organic materials: dipoles, quadrupoles, traps, and all that , 1998, Optics & Photonics.

[53]  E. W. Meijer,et al.  Band‐Gap Engineering of Donor–Acceptor‐Substituted π‐Conjugated Polymers , 1998 .

[54]  H. Sirringhaus,et al.  Integrated optoelectronic devices based on conjugated polymers , 1998, Science.

[55]  M. Vissenberg,et al.  Theory of the field-effect mobility in amorphous organic transistors , 1998, cond-mat/9802133.

[56]  Richard D. McCullough,et al.  THE CHEMISTRY OF CONDUCTING POLYTHIOPHENES , 1998 .

[57]  Donal D. C. Bradley,et al.  Space-charge limited conduction with traps in poly(phenylene vinylene) light emitting diodes , 1997 .

[58]  L. Zuppiroli,et al.  Space-charge-limited currents due to large polarons , 1997 .

[59]  C. Kuo,et al.  Field-effect transistor with polyaniline thin film as semiconductor , 1997 .

[60]  Dunlap,et al.  Charge-Dipole Model for the Universal Field Dependence of Mobilities in Molecularly Doped Polymers. , 1996, Physical review letters.

[61]  A. Dodabalapur,et al.  Intrinsic Transport Properties and Performance Limits of Organic Field-Effect Transistors , 1996, Science.

[62]  Moses Mechanism of carrier photogeneration in amorphous selenium: Fast transient photoconductivity. , 1996, Physical review. B, Condensed matter.

[63]  R. D. Mccullough,et al.  Improved electroluminescence performance of poly (3-alkylthiophenes) having a high head-to-tail (HT) ratio , 1996 .

[64]  Esther M. Conwell,et al.  High-field hopping mobility in molecular systems with spatially correlated energetic disorder , 1995 .

[65]  Sergey V. Novikov,et al.  Distribution of the electrostatic potential in a lattice of randomly oriented dipoles , 1994 .

[66]  L. Zuppiroli,et al.  Hopping in disordered conducting polymers. , 1994, Physical review. B, Condensed matter.

[67]  Tian-an Chen,et al.  Polyalkylthiophenes with the smallest bandgap and the highest intrinsic conductivity , 1993 .

[68]  Hiroshi Koezuka,et al.  Polythienylenevinylene thin‐film transistor with high carrier mobility , 1993 .

[69]  A. Heeger,et al.  Soluble conjugated polymers with degenerate ground state derivatives of poly(1,6‐heptadiyne) , 1993 .

[70]  Rudolph A. Marcus,et al.  Electron transfer reactions in chemistry. Theory and experiment , 1993 .

[71]  Blackman Ja,et al.  Interchain coupling and optical absorption in degenerate and nondegenerate polymers. , 1993 .

[72]  Manikandan Jayaraman,et al.  Self-orienting head-to-tail poly(3-alkylthiophenes): new insights on structure-property relationships in conducting polymers , 1993 .

[73]  Conwell,et al.  First-principles calculation of the three-dimensional band structure of poly(phenylene vinylene). , 1993, Physical review. B, Condensed matter.

[74]  H. Bässler Charge Transport in Disordered Organic Photoconductors a Monte Carlo Simulation Study , 1993 .

[75]  J. Tsukamoto Recent advances in highly conductive polyacetylene , 1992 .

[76]  A. J. Heeger,et al.  Photoinduced Electron Transfer from a Conducting Polymer to Buckminsterfullerene , 1992, Science.

[77]  E. Conwell,et al.  Interchain polaron transport in trans-polyacetylene , 1992 .

[78]  Richard D. McCullough,et al.  Enhanced electrical conductivity in regioselectively synthesized poly(3-alkylthiophenes) , 1992 .

[79]  Roald Hoffmann,et al.  A Chemical Approach to the Orbitals of Organic Polymers , 1991 .

[80]  Michael F. Shlesinger,et al.  Time‐Scale Invariance in Transport and Relaxation , 1991 .

[81]  E. Conwell,et al.  Free soliton transport and photoconductivity in trans-polyacetylene , 1989 .

[82]  D. Moses Charge quantum yield and transient transport properties of anthracene and amorphous selenium , 1989 .

[83]  A. Heeger Charge transfer in conducting polymers. Striving toward intrinsic properties , 1989 .

[84]  Magnus Willander,et al.  Field‐effect mobility of poly(3‐hexylthiophene) , 1988 .

[85]  Torahiko Ando,et al.  Field-effect transistor with polythiophene thin film , 1987 .

[86]  Alan J. Heeger,et al.  Towards organic polymers with very small intrinsic band gaps. I. Electronic structure of polyisothianaphthene and derivatives , 1986 .

[87]  Y. Gartstein,et al.  Interchain coupling and polarons in quasi-one-dimensional molecular systems , 1986 .

[88]  J. Brédas,et al.  Polarons, bipolarons, and solitons in conducting polymers , 1985 .

[89]  K. C. Kao,et al.  Electrical Transport in Solids , 1983 .

[90]  D. Campbell,et al.  Optical absorption from polarons in a model of polyacetylene , 1983 .

[91]  Benjamin Abeles,et al.  Evidence for Exponential Band Tails in Amorphous Silicon Hydride , 1981 .

[92]  S. Kivelson Electron Hopping Conduction in the Soliton Model of Polyacetylene , 1981 .

[93]  B. Movaghar,et al.  On the theory of hopping conductivity in disordered systems , 1981 .

[94]  A. Heeger,et al.  Soliton excitations in polyacetylene , 1980 .

[95]  Alan J. Heeger,et al.  Solitons in polyacetylene , 1979 .

[96]  C. K. Chiang,et al.  Electrical Conductivity in Doped Polyacetylene. , 1977 .

[97]  E. Montroll,et al.  Anomalous transit-time dispersion in amorphous solids , 1975 .

[98]  V. Walatka,et al.  Polysulfur Nitride—a One-Dimensional Chain with a Metallic Ground State , 1973 .

[99]  W. Spear,et al.  Drift mobility techniques for the study of electrical transport properties in insulating solids , 1969 .

[100]  E. Abrahams,et al.  Impurity Conduction at Low Concentrations , 1960 .