QUANTUM DOT OPTO-ELECTRONIC DEVICES

▪ Abstract Highly strained semiconductors grow epitaxially on mismatched substrates in the Stranski-Krastanow growth mode, wherein islands are formed after a few monolayers of layer-by-layer growth. Elastic relaxation on the facet edges, renormalization of the surface energy of the facets, and interaction between neighboring islands via the substrate are the driving forces for self-organized growth. The dimensions of the defect-free islands are of the order λB, the de Broglie wavelength, and provide three-dimensional quantum confinement of carriers. Self-organized In(Ga)As/GaAs quantum dots, or quantum boxes, are grown by molecular beam expitaxy (MBE) or metal-organic vapor phase epitaxy (MOVPE) on GaAs, InP, and other substrates and are being incorporated in microelectronic and opto-electronic devices. The use of strain to produce self-organized quantum dots has now become a well-accepted approach and is widely used in III–V semiconductors and other material systems. Much progress has been made in the ar...

[1]  J. Brault,et al.  Strong normal-incidence infrared absorption in self-organized InAs/InAlAs quantum dots grown on InP(001) , 1999 .

[2]  P. Bhattacharya,et al.  Tunnel injection In0.4Ga0.6As/GaAs quantum dot lasers with 15 GHz modulation bandwidth at room temperature , 2002 .

[3]  James L. Merz,et al.  Selective excitation of the photoluminescence and the energy levels of ultrasmall InGaAs/GaAs quantum dots , 1994 .

[4]  Mikhail V. Maximov,et al.  Low threshold, large To injection laser emission from (InGa)As quantum dots , 1994 .

[5]  Diana L. Huffaker,et al.  Optical characterization of two-dimensional photonic crystal cavities with indium arsenide quantum dot emitters , 2001 .

[6]  A. A. Ukhanov,et al.  Orientation dependence of the optical properties in InAs quantum-dash lasers on InP , 2002 .

[7]  Joe C. Campbell,et al.  Normal-incidence InAs self-assembled quantum-dot infrared photodetectors with a high detectivity , 2002 .

[8]  Cusack,et al.  Electronic structure of InAs/GaAs self-assembled quantum dots. , 1996, Physical review. B, Condensed matter.

[9]  Andreas Stintz,et al.  Extremely low room-temperature threshold current density diode lasers using InAs dots in In/sub 0.15/Ga/sub 0.85/As quantum well , 1999 .

[10]  N. Ledentsov,et al.  Gain and differential gain of single layer InAs/GaAs quantum dot injection lasers , 1996 .

[11]  P. Bhattacharya,et al.  Photoluminescence linewidth of self-organized In0.4Ga0.6As/GaAs quantum dots grown on InGaAlAs stressor dots , 1999 .

[12]  Hiroyuki Sakaki,et al.  Density and size control of self-assembled InAs quantum dots: preparation of very low-density dots by post-annealing , 2002 .

[13]  M. Asada,et al.  Gain and the threshold of three-dimensional quantum-box lasers , 1986 .

[14]  G. Bastard,et al.  Phonon scattering and energy relaxation in two-, one-, and zero-dimensional electron gases. , 1990, Physical review. B, Condensed matter.

[15]  Duncan G. Steel,et al.  Nonlinear optical and electro-optic properties of InAs/GaAs self-organized quantum dots , 2001 .

[16]  A. Levi,et al.  Bias‐controlled intersubband wavelength switching in a GaAs/AlGaAs quantum well laser , 1989 .

[17]  P. Bhattacharya,et al.  Observation of phonon bottleneck in quantum dot electronic relaxation. , 2001, Physical review letters.

[18]  Jasprit Singh,et al.  SMALL-SIGNAL MODULATION AND DIFFERENTIAL GAIN OF SINGLE-MODE SELF-ORGANIZED IN0.4GA0.6AS/GAAS QUANTUM DOT LASERS , 1997 .

[19]  Alexander V. Uskov,et al.  Auger carrier capture kinetics in self-assembled quantum dot structures , 1998 .

[20]  N. N. Ledentsov,et al.  Midinfrared emission from near-infrared quantum-dot lasers , 2000 .

[21]  Nikolai N. Ledentsov,et al.  InAs/GaAs quantum dots radiative recombination from zero‐dimensional states , 1995 .

[22]  M. Lagally,et al.  Self-organization in growth of quantum dot superlattices. , 1996, Physical review letters.

[23]  Jean-Michel Gérard,et al.  Infrared spectroscopy of intraband transitions in self-organized InAs/GaAs quantum dots , 1997 .

[24]  Harris,et al.  Vertically aligned and electronically coupled growth induced InAs islands in GaAs. , 1996, Physical review letters.

[25]  The distribution of persistent currents in interacting 2D disordered cylinders , 1995 .

[26]  J. Laskar,et al.  Enhanced modulation bandwidth (20 GHz) of In/sub 0.4/Ga/sub 0.6/As-GaAs self-organized quantum-dot lasers at cryogenic temperatures: role of carrier relaxation and differential gain , 1998, IEEE Photonics Technology Letters.

[27]  Anupam Madhukar,et al.  Independent manipulation of density and size of stress-driven self-assembled quantum dots , 1998 .

[28]  Hooman Mohseni,et al.  Growth and characterization of InGaAs/InGaP quantum dots for midinfrared photoconductive detector , 1998 .

[29]  P. P. González-Borrero,et al.  Exciton localization and temperature stability in self‐organized InAs quantum dots , 1996 .

[30]  Shigeo Sugou,et al.  Influence of GaAs capping on the optical properties of InGaAs/GaAs surface quantum dots with 1.5 μm emission , 1998 .

[31]  Mikhail V. Maximov,et al.  InAs-InGaAs quantum dot VCSELs on GaAs substrates emitting at 1.3 µm , 2000 .

[32]  Diana L. Huffaker,et al.  Electroluminescence efficiency of 1.3 μm wavelength InGaAs/GaAs quantum dots , 1998 .

[33]  Sugawara,et al.  Phonon bottleneck in self-formed InxGa1-xAs/GaAs quantum dots by electroluminescence and time-resolved photoluminescence. , 1996, Physical review. B, Condensed matter.

[34]  Jamie D. Phillips,et al.  Linear and quadratic electro-optic coefficients of self-organized In0.4Ga0.6As/GaAs quantum dots , 1998 .

[35]  Jagadeesh Pamulapati,et al.  Realization of in-situ sub two-dimensional quantum structures by strained layer growth phenomena in the InxGa1- xAs/GaAs system , 1996 .

[36]  T. Takagahara Excitonic optical nonlinearity and exciton dynamics in semiconductor quantum dots , 1987 .

[37]  G. Moreau,et al.  Growth and optical characterizations of InAs quantum dots on InP substrate: towards a 1.55 μm quantum dot laser , 2003 .

[38]  Jamie D. Phillips,et al.  Room temperature luminescence from self-organized quantum dots with high size uniformity , 1997 .

[39]  Jasprit Singh,et al.  Strain distribution and electronic spectra of InAs/GaAs self-assembled dots: An eight-band study , 1997 .

[40]  J. Leem,et al.  Visible photoluminescence from self-assembled InAs quantum dots embedded in AlAs cladding layers , 1999 .

[41]  David T. D. Childs,et al.  Time-resolved studies of annealed InAs/GaAs self-assembled quantum dots , 2001 .

[42]  N. Ledentsov,et al.  Spontaneous ordering of arrays of coherent strained islands. , 1995, Physical review letters.

[43]  Naoto Horiguchi,et al.  Quantum Dot Infrared Photodetector Using Modulation Doped InAs Self-Assembled Quantum Dots , 1999 .

[44]  Tawee Tanbun-Ek,et al.  Multielectrode quantum well lasers for digital switching , 1990, Photonics West - Lasers and Applications in Science and Engineering.

[45]  James A. Lott,et al.  Vertical cavity lasers based on vertically coupled quantum dots , 1997 .

[46]  Nikolai N. Ledentsov,et al.  Excited states in self‐organized InAs/GaAs quantum dots: Theory and experiment , 1996 .

[47]  J. Faist,et al.  Room temperature mid-infrared quantum cascade lasers , 1996 .

[48]  Sanjay Krishna,et al.  High-detectivity, normal-incidence, mid-infrared (λ∼4 μm)InAs/GaAs quantum-dot detector operating at 150 K , 2001 .

[49]  Charles W. Tu,et al.  Self-assembled GaInNAs quantum dots for 1.3 and 1.55 μm emission on GaAs , 2000 .

[50]  P. N. Keating,et al.  Effect of Invariance Requirements on the Elastic Strain Energy of Crystals with Application to the Diamond Structure , 1966 .

[51]  James L. Merz,et al.  Visible luminescence from semiconductor quantum dots in large ensembles , 1995 .

[52]  Andreas Stintz,et al.  Low-threshold quantum dot lasers with 201 nm tuning range , 2000 .

[53]  Jasprit Singh,et al.  Carrier dynamics and high-speed modulation properties of tunnel injection InGaAs-GaAs quantum-dot lasers , 2003 .

[54]  J. Laskar,et al.  In(Ga)As/GaAs self-organized quantum dot lasers: DC and small-signal modulation properties , 1999 .

[55]  Jasprit Singh,et al.  Temperature-dependent carrier dynamics in self-assembled InGaAs quantum dots , 2002 .

[56]  Jukka Tulkki,et al.  Temperature dependence of carrier relaxation in strain-induced quantum dots , 1998 .

[57]  Akio Sasaki,et al.  Strain energy and critical thickness of heteroepitaxial InGaAs layers on GaAs substrate , 1991 .

[58]  S. Krishna,et al.  High-speed modulation and switching characteristics of In(Ga)As-Al(Ga)As self-organized quantum-dot lasers , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[59]  Dieter Bimberg,et al.  Quantum dots: lasers and amplifiers , 2003, Microelectron. J..

[60]  Christoph Becher,et al.  Photonic crystal microcavities with self-assembled InAs quantum dots as active emitters , 2001 .

[61]  Anupam Madhukar,et al.  Normal-incidence voltage-tunable middle- and long-wavelength infrared photoresponse in self-assembled InAs quantum dots , 2002 .

[62]  P. Bhattacharya,et al.  Dynamic characteristics of high-speed In0.4Ga0.6As/GaAs self-organized quantum dot lasers at room temperature , 2002 .

[63]  G. Bastard,et al.  Calculation of the energy levels in {InAs}/{GaAs} quantum dots , 1994 .

[64]  Yozo Shimada,et al.  Bound-to-continuum intersubband photoconductivity of self-assembled InAs quantum dots in modulation-doped heterostructures , 1999 .

[65]  Werner Schrenk,et al.  Electroluminescence of a quantum dot cascade structure , 2003 .

[66]  Nikolai N. Ledentsov,et al.  Interconnection between gain spectrum and cavity mode in a quantum-dot vertical-cavity laser , 1999 .

[67]  Victor Ryzhii,et al.  The theory of quantum-dot infrared phototransistors , 1996 .

[68]  P. Bhattacharya,et al.  Refractive index and electro‐optic effect in compressive and tensile strained quantum wells , 1991 .

[69]  C. H. Wang,et al.  Characteristics of InGaAs quantum dot infrared photodetectors , 1998 .

[70]  Daniel Wasserman,et al.  Midinfrared luminescence from InAs quantum dots in unipolar devices , 2002 .

[71]  Peichen Yu,et al.  An electrically injected InAs/GaAs quantum-dot photonic crystal microcavity light-emitting diode , 2002 .

[72]  Yuansha Chen,et al.  Intraband absorption in the 8–12 μm band from Si-doped vertically aligned InGaAs/GaAs quantum-dot superlattice , 1998 .

[73]  M. Segev,et al.  Mid-infrared photoconductivity in InAs quantum dots , 1997 .

[74]  Mark J. Bloemer,et al.  Electro-optic properties near the absorption edge of GaAs/AlGaAs multiple-quantum-well waveguides , 1993 .

[75]  Nikolai N. Ledentsov,et al.  Energy relaxation by multiphonon processes in InAs/GaAs quantum dots , 1997 .

[76]  Peter Michael Smowton,et al.  Experimental investigation of the effect of wetting-layer states on the gain–current characteristic of quantum-dot lasers , 2002 .

[77]  A. Stintz,et al.  Optical characteristics of 1.24-μm InAs quantum-dot laser diodes , 1999, IEEE Photonics Technology Letters.

[78]  Kang L. Wang,et al.  INTERSUBBAND ABSORPTION IN BORON-DOPED MULTIPLE GE QUANTUM DOTS , 1999 .

[79]  Elias Towe,et al.  NORMAL-INCIDENCE INTERSUBBAND (IN, GA)AS/GAAS QUANTUM DOT INFRARED PHOTODETECTORS , 1998 .

[80]  Gerhard Abstreiter,et al.  Quantum-dot infrared photodetector with lateral carrier transport , 2001 .

[81]  Benisty,et al.  Intrinsic mechanism for the poor luminescence properties of quantum-box systems. , 1991, Physical review. B, Condensed matter.

[82]  Pallab Bhattacharya,et al.  Room-temperature far-infrared emission from a self-organized InGaAs/GaAs quantum-dot laser , 2000 .

[83]  Johann Peter Reithmaier,et al.  High frequency characteristics of InAs/GaInAs quantum dot distributed feedback lasers emitting at 1.3 /spl mu/m , 2001 .

[84]  T. E. Lamas,et al.  InAs/GaAs quantum dots optically active at 1.5 μm , 2003 .

[85]  John E. Bowers,et al.  Time‐resolved optical characterization of InGaAs/GaAs quantum dots , 1994 .

[86]  Hsien-Shun Wu,et al.  Low dark current quantum-dot infrared photodetectors with an AlGaAs current blocking layer , 2001 .

[87]  Heinz Schweizer,et al.  Quantum Dots and Quantum Wires with High Optical Quality by Implantation-Induced Intermixing , 1993 .

[88]  Shih-Yen Lin,et al.  High-performance InAs/GaAs quantum-dot infrared photodetectors with a single-sided Al0.3Ga0.7As blocking layer , 2001 .

[89]  Dong Pan,et al.  Normal incident infrared absorption from InGaAs/GaAs quantum dot superlattice , 1996 .

[90]  D. Bimberg,et al.  High-reliability MOCVD-grown quantum dot laser , 2002 .

[91]  Sanjay Krishna,et al.  Intersubband gain and stimulated emission in long-wavelength (/spl lambda/=13 /spl mu/m) intersubband In(Ga)As-GaAs quantum-dot electroluminescent devices , 2001 .

[92]  P. Yu,et al.  Electrically injected photonic crystal edge-emitting quantum-dot light source , 2004, IEEE Photonics Technology Letters.

[93]  Kent D. Choquette,et al.  Etching depth dependence of the effective refractive index in two-dimensional photonic-crystal-patterned vertical-cavity surface-emitting laser structures , 2003 .

[94]  Nikolai N. Ledentsov,et al.  Multiphonon‐relaxation processes in self‐organized InAs/GaAs quantum dots , 1996 .

[95]  G. Abstreiter,et al.  Mid-infrared photocurrent measurements on self-assembled Ge dots in Si , 2000 .

[96]  G. Bastard,et al.  Photoluminescence of single InAs quantum dots obtained by self-organized growth on GaAs. , 1994, Physical review letters.

[97]  K. K. Ko,et al.  Photoluminescence and electro‐optic properties of small (25–35 nm diameter) quantum boxes , 1993 .

[98]  P. Bhattacharya,et al.  Reply: Room-temperature long-wavelength ( = 13.3 [micro sign]m) unipolar quantum dot intersubband laser , 2000 .

[99]  David A. B. Miller,et al.  Theory of the linear and nonlinear optical properties of semiconductor microcrystallites. , 1987, Physical review. B, Condensed matter.

[100]  Sanjay Krishna,et al.  Normal-incidence, high-temperature, mid-infrared, InAs-GaAs vertical quantum-dot infrared photodetector , 2001 .

[101]  D. Bimberg,et al.  Spectral hole-burning and carrier-heating dynamics in InGaAs quantum-dot amplifiers , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[102]  Bryant Excitons in quantum boxes: Correlation effects and quantum confinement. , 1988, Physical review. B, Condensed matter.

[103]  John E. Bowers,et al.  Room temperature lasing from InGaAs quantum dots , 1996 .

[104]  Hiroshi Ishikawa,et al.  Quantum-Dot Semiconductor Optical Amplifiers for High Bit-Rate Signal Processing over 40 Gbit/s , 2001 .

[105]  Diana L. Huffaker,et al.  Quantum dimensionality, entropy, and the modulation response of quantum dot lasers , 2000 .

[106]  Pallab Bhattacharya,et al.  Role of strain and growth conditions on the growth front profile of InxGa1−xAs on GaAs during the pseudomorphic growth regime , 1988 .

[107]  A. Yakimov,et al.  Interlevel Ge/Si quantum dot infrared photodetector , 2001 .

[108]  Subhananda Chakrabarti,et al.  High responsivity AlAs/InAs/GaAs superlattice quantum dot infrared photodetector , 2004 .

[109]  Kobayashi,et al.  Vertically self-organized InAs quantum box islands on GaAs(100). , 1995, Physical review letters.

[110]  A. Wolf,et al.  InAs/GaInAs quantum dot DFB lasers emitting at 1.3 µm , 2001 .

[111]  D. Bimberg,et al.  InAs/GaAs pyramidal quantum dots: Strain distribution, optical phonons, and electronic structure. , 1995, Physical review. B, Condensed matter.

[112]  Masamichi Yamanishi,et al.  Field-induced modulations of refractive index and absorption coefficient in a GaAs/AlGaAs quantum well structure , 1986 .

[113]  Jamie D. Phillips,et al.  Self-assembled InAs-GaAs quantum-dot intersubband detectors , 1999 .

[114]  Jasprit Singh,et al.  Rapid carrier relaxation in In 0.4 Ga 0.6 A s / G a A s quantum dots characterized by differential transmission spectroscopy , 1998 .

[115]  Jamie D. Phillips,et al.  Room-temperature operation of In0.4Ga0.6As/GaAs self-organised quantum dot lasers , 1996 .

[116]  Bernard Jusserand,et al.  Structural and optical properties of high quality InAs/GaAs short‐period superlattices grown by migration‐enhanced epitaxy , 1989 .

[117]  Ramu V. Ramaswamy,et al.  Analysis and design of high-speed high-efficiency GaAs-AlGaAs double-heterostructure waveguide phase modulator , 1991 .

[118]  Hiroshi Ishikawa,et al.  Temperature dependent lasing characteristics of multi-stacked quantum dot lasers , 1997 .

[119]  Tawee Tanbun-Ek,et al.  A systems perspective on digital interconnection technology , 1992 .

[120]  D. Bouchier,et al.  Intraband absorption in Ge/Si self-assembled quantum dots , 1999 .

[121]  K. G. Ravikumar,et al.  Analysis of electric field effect in quantum box structure and its application to low-loss intersectional type optical switch , 1991 .

[122]  G. Strasser,et al.  Energy level engineering in InAs quantum dot nanostructures , 2002 .

[123]  Yasuhiko Arakawa,et al.  Progress in GaN-based quantum dots for optoelectronics applications , 2002 .

[124]  C. A. Burrus,et al.  Electro‐optic phase modulation in GaAs/AlGaAs quantum well waveguides , 1988 .

[125]  Masahiro Asada,et al.  Threshold current density of GaInAsP/InP quantum-box lasers , 1989 .

[126]  Victor M. Ustinov,et al.  InAs/InGaAsN quantum dots emitting at 1.55 μm grown by molecular beam epitaxy , 2003 .

[127]  Nobuhiko P. Kobayashi,et al.  In situ, atomic force microscope studies of the evolution of InAs three‐dimensional islands on GaAs(001) , 1996 .

[128]  Hongtao Jiang,et al.  Self-assembled semiconductor structures: electronic and optoelectronic properties , 1998 .

[129]  Shigehisa Arai,et al.  Operational wavelength range of GaInAs(P)-InP intersectional optical switches using field-induced electrooptic effect in low-dimensional quantum-well structures , 1992 .

[130]  Diana L. Huffaker,et al.  Ground state lasing from a quantum-dot oxide-confined vertical-cavity surface-emitting laser , 1999 .

[131]  Richard M. Martin,et al.  Elastic Properties of ZnS Structure Semiconductors , 1970 .

[132]  Diana L. Huffaker,et al.  Quantum dot vertical-cavity surface-emitting laser with a dielectric aperture , 1997 .

[133]  Jamie D. Phillips,et al.  Photoluminescence and far-infrared absorption in Si-doped self-organized InAs quantum dots , 1997 .

[134]  Dieter Bimberg,et al.  Close-to-ideal device characteristics of high-power InGaAs/GaAs quantum dot lasers , 2001 .

[135]  Jasprit Singh,et al.  Photoluminescence and time-resolved photoluminescence characteristics of InxGa(1−x)As/GaAs self-organized single- and multiple-layer quantum dot laser structures , 1997 .

[136]  K. Nishi,et al.  A narrow photoluminescence linewidth of 21 meV at 1.35 μm from strain-reduced InAs quantum dots covered by In0.2Ga0.8As grown on GaAs substrates , 1999 .

[137]  Kang L. Wang,et al.  Observation of inter-sub-level transitions in modulation-doped Ge quantum dots , 1999 .

[138]  Egeler,et al.  Electron relaxation in quantum dots by means of Auger processes. , 1992, Physical review. B, Condensed matter.

[139]  Jamie D. Phillips,et al.  Nanometer-scale studies of vertical organization and evolution of stacked self-assembled InAs/GaAs quantum dots , 1999 .

[140]  S. Denbaars,et al.  Direct formation of quantum‐sized dots from uniform coherent islands of InGaAs on GaAs surfaces , 1993 .

[141]  Shiang-Feng Tang,et al.  Near-room-temperature operation of an InAs/GaAs quantum-dot infrared photodetector , 2001 .

[142]  E. Purcell,et al.  Resonance Absorption by Nuclear Magnetic Moments in a Solid , 1946 .

[143]  Anupam Madhukar,et al.  Nature of strained InAs three‐dimensional island formation and distribution on GaAs(100) , 1994 .

[144]  Harri Lipsanen,et al.  Self-assembled GaIn(N)As quantum dots: Enhanced luminescence at 1.3 μm , 2001 .

[145]  Tae-Kyung Yoo,et al.  Room temperature far infrared (8/spl sim/10 μm) photodetectors using self-assembled InAs quantum dots with high detectivity , 2000 .

[146]  J. Laskar,et al.  Temperature-dependent measurement of Auger recombination in self-organized In0.4Ga0.6As/GaAsIn0.4Ga0.6As/GaAs quantum dots , 2001 .

[147]  L. Goldstein,et al.  Growth by molecular beam epitaxy and characterization of InAs/GaAs strained‐layer superlattices , 1985 .

[148]  Anupam Madhukar,et al.  Punctuated island growth: An approach to examination and control of quantum dot density, size, and shape evolution , 1999 .

[149]  A. Madhukar,et al.  Tailoring detection bands of InAs quantum-dot infrared photodetectors using InxGa1−xAs strain-relieving quantum wells , 2001 .

[150]  Joe C. Campbell,et al.  Normal incidence InAs/AlxGa1−xAs quantum dot infrared photodetectors with undoped active region , 2001 .

[151]  Jamie D. Phillips,et al.  Evaluation of the fundamental properties of quantum dot infrared detectors , 2002 .

[152]  Andreas Stintz,et al.  High-responsivity, normal-incidence long-wave infrared (λ∼7.2 μm) InAs/In0.15Ga0.85As dots-in-a-well detector , 2002 .

[153]  Hajime Shoji,et al.  Emission from discrete levels in self‐formed InGaAs/GaAs quantum dots by electric carrier injection: Influence of phonon bottleneck , 1996 .

[154]  A. Levi,et al.  Wavelength selective electro-optic flip-flop , 1998 .

[155]  Sanjay Krishna,et al.  Absorption, carrier lifetime, and gain in InAs-GaAs quantum-dot infrared photodetectors , 2003 .

[156]  F. K. Reinhart,et al.  Quadratic electro‐optic light modulation in a GaAs/AlGaAs multiquantum well heterostructure near the excitonic gap , 1986 .

[157]  P. Petroff,et al.  Intersublevel transitions in InAs/GaAs quantum dots infrared photodetectors , 1998 .

[158]  John E. Bowers,et al.  1.3 μm photoluminescence from InGaAs quantum dots on GaAs , 1995 .

[159]  A. Yakimov,et al.  Normal-incidence infrared photoconductivity in Si p-i-n diode with embedded Ge self-assembled quantum dots , 1999 .