Rheology and microstructure of non-colloidal suspensions under shear studied with Smoothed Particle Hydrodynamics

Abstract In this work a Smoothed Particle Hydrodynamics model is presented to study rheology and microstructure of a non-colloidal suspension of spherical particles in a Newtonian solvent. The scheme presented in (Bian and Ellero, 2014) is extended to three-dimensions incorporating both normal and tangential short-range interparticle lubrication forces which are solved implicitly with a refined splitting strategy. The scheme allows to bypass prohibitively small time steps generally required for handling divergent lubrication forces and allows to simulate large particle systems. Rheology of a three-dimensional hard-spheres suspension confined in a plane Couette rheometer is investigated for concentrations up to ϕ = 0.5 . Results for the relative suspension viscosity ηr are analyzed against sample size and numerical convergence of the splitting lubrication scheme and compared with available experimental and simulations data. Very close agreement with the experiments is obtained for ηr up to ϕ = 0.35 . At larger concentrations, our results are still unable to explain the significant viscosity increase observed in experiments. Modest shear-thickening is also observed which is related to anisotropy of the particle radial distribution function (RDF) and presence of reversible hydrodynamic aggregates increasing in size with increasingly applied shear rates.

[1]  David T. Leighton,et al.  The characterization of the total stress of concentrated suspensions of noncolloidal spheres in Newtonian fluids , 2000 .

[2]  J. Morris,et al.  Modeling Low Reynolds Number Incompressible Flows Using SPH , 1997 .

[3]  John F. Brady,et al.  Rheology and microstructure in concentrated noncolloidal suspensions , 2002 .

[4]  D. Ercolani,et al.  Shear viscosity of settling suspensions , 1979 .

[5]  Albert Einstein,et al.  Berichtigung zu meiner Arbeit: „Eine neue Bestimmung der Moleküldimensionen”︁ [AdP 34, 591 (1911)] , 2005, Annalen der Physik.

[6]  Daniel Bonn,et al.  Shear thickening of cornstarch suspensions as a reentrant jamming transition. , 2007, Physical review letters.

[7]  R. Tanner,et al.  Simulation of the rheological properties of suspensions of oblate spheroidal particles in a Newtonian fluid , 2009 .

[8]  N. Wagner,et al.  Microstructure and rheology of soft to rigid shear-thickening colloidal suspensions , 2015 .

[10]  G. A. Mansoori,et al.  Asphaltene Flocculation During Oil Production and Processing: A Thermodynamic Collodial Model , 1987 .

[11]  P. Español,et al.  Smoothed particle hydrodynamic model for viscoelastic fluids with thermal fluctuations. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  Pier Luca Maffettone,et al.  A numerical method for simulating concentrated rigid particle suspensions in an elongational flow using a fixed grid , 2007, J. Comput. Phys..

[13]  P. Mazur,et al.  The effective shear viscosity of a uniform suspension of spheres , 1977 .

[14]  G. Batchelor,et al.  The hydrodynamic interaction of two small freely-moving spheres in a linear flow field , 1972, Journal of Fluid Mechanics.

[15]  Andreas Acrivos,et al.  Shear‐Induced Structure in a Concentrated Suspension of Solid Spheres , 1980 .

[16]  Mikio Yamanoi,et al.  Bridging the gap between microstructure and macroscopic behavior of monodisperse and bimodal colloidal suspensions , 2013 .

[17]  Heinrich M. Jaeger,et al.  The role of dilation and confining stresses in shear thickening of dense suspensions , 2010, 1010.4921.

[18]  Xiang Cheng,et al.  Imaging the Microscopic Structure of Shear Thinning and Thickening Colloidal Suspensions , 2011, Science.

[19]  Francis Gadala-Maria,et al.  Fore‐and‐Aft Asymmetry in a Concentrated Suspension of Solid Spheres , 1987 .

[20]  N. Wagner,et al.  Material properties of the shear-thickened state in concentrated near hard-sphere colloidal dispersions , 2014 .

[21]  J. Lewis,et al.  Direct-write assembly of ceramics from colloidal inks , 2002 .

[22]  Jan Mewis,et al.  Colloidal Suspension Rheology: Preface , 2011 .

[23]  Boo Cheong Khoo,et al.  Investigation of particles size effects in Dissipative Particle Dynamics (DPD) modelling of colloidal suspensions , 2015, Comput. Phys. Commun..

[24]  R. Mari,et al.  Shear thickening, frictionless and frictional rheologies in non-Brownian suspensions , 2014, 1403.6793.

[25]  Pep Español,et al.  A SPH-based particle model for computational microrheology , 2012 .

[26]  P. Nott,et al.  Experimental measurements of the normal stresses in sheared Stokesian suspensions , 2003, Journal of Fluid Mechanics.

[27]  N. Wagner,et al.  Flow-small angle neutron scattering measurements of colloidal dispersion microstructure evolution through the shear thickening transition , 2002 .

[28]  A. Ladd,et al.  Lubrication corrections for lattice-Boltzmann simulations of particle suspensions. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  J. Brady,et al.  Structure, diffusion and rheology of Brownian suspensions by Stokesian Dynamics simulation , 2000, Journal of Fluid Mechanics.

[30]  Wook Ryol Hwang,et al.  Direct simulation of particle suspensions in sliding bi-periodic frames , 2004 .

[31]  F. Peters,et al.  Microstructure in sheared non-Brownian concentrated suspensions , 2013 .

[32]  Pep Español,et al.  Consistent scaling of thermal fluctuations in smoothed dissipative particle dynamics. , 2009, The Journal of chemical physics.

[33]  R. Delgado‐Buscalioni,et al.  A multiblob approach to colloidal hydrodynamics with inherent lubrication. , 2014, The Journal of chemical physics.

[34]  N. Phan-Thien,et al.  Flow enhancement in pulsating flow of non-colloidal suspensions in tubes , 2014 .

[35]  J. Brady,et al.  The rheology of Brownian suspensions , 1989 .

[36]  Norman J. Wagner,et al.  Microstructure and rheology relationships for shear thickening colloidal dispersions , 2015, Journal of Fluid Mechanics.

[37]  M. Haw,et al.  Jamming and unjamming of concentrated colloidal dispersions in channel flow , 2010 .

[38]  M. Schliwa,et al.  Rheology , 2008, Current Biology.

[39]  R. Mari,et al.  Discontinuous shear thickening of frictional hard-sphere suspensions. , 2013, Physical review letters.

[40]  D. Quemada,et al.  Rheology of concentrated disperse systems and minimum energy dissipation principle , 1977 .

[41]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[42]  X. Bian,et al.  Three-dimensional simulations of dilute and concentrated suspensions using smoothed particle hydrodynamics , 2016, CPM 2016.

[43]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[44]  Eric Brown,et al.  Generality of shear thickening in dense suspensions. , 2009, Nature materials.

[45]  Nikolaus A. Adams,et al.  SPH simulations of flow around a periodic array of cylinders confined in a channel , 2011 .

[46]  G. Batchelor,et al.  The determination of the bulk stress in a suspension of spherical particles to order c2 , 1972, Journal of Fluid Mechanics.

[47]  Xin Bian,et al.  A splitting integration scheme for the SPH simulation of concentrated particle suspensions , 2014, Comput. Phys. Commun..

[48]  Xin Bian,et al.  Hydrodynamic shear thickening of particulate suspension under confinement , 2014 .

[49]  Hank Childs,et al.  VisIt: An End-User Tool for Visualizing and Analyzing Very Large Data , 2011 .

[50]  John F. Brady,et al.  Accelerated Stokesian Dynamics simulations , 2001, Journal of Fluid Mechanics.

[51]  Nikolaus A. Adams,et al.  Angular-momentum conservative smoothed particle dynamics for incompressible viscous flows , 2006 .

[52]  A. Einstein Eine neue Bestimmung der Moleküldimensionen , 1905 .

[53]  David J. Jeffrey,et al.  Calculation of the resistance and mobility functions for two unequal rigid spheres in low-Reynolds-number flow , 1984, Journal of Fluid Mechanics.

[54]  Nam Mai-Duy,et al.  A spring model for suspended particles in dissipative particle dynamics , 2014 .

[55]  P. Lindner,et al.  Rheological and small angle neutron scattering investigation of shear‐induced particle structures of concentrated polymer dispersions submitted to plane Poiseuille and Couette flowa) , 1992 .

[56]  F. Peters,et al.  Rheology of sheared suspensions of rough frictional particles , 2014, Journal of Fluid Mechanics.

[57]  W. Poon,et al.  Velocity oscillations in microfluidic flows of concentrated colloidal suspensions. , 2008, Physical review letters.

[58]  Ivo F. Sbalzarini,et al.  PPM - A highly efficient parallel particle-mesh library for the simulation of continuum systems , 2006, J. Comput. Phys..

[59]  George Em Karniadakis,et al.  Rheology, microstructure and migration in brownian colloidal suspensions. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[60]  Jonathan W. Bender,et al.  Reversible shear thickening in monodisperse and bidisperse colloidal dispersions , 1996 .

[61]  R. C. Ball,et al.  Shear thickening in colloidal dispersions , 2008 .

[62]  Pep Español,et al.  Smoothed dissipative particle dynamics. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[63]  John F. Brady,et al.  Microstructure of strongly sheared suspensions and its impact on rheology and diffusion , 1997, Journal of Fluid Mechanics.

[64]  J. Monaghan Simulating Free Surface Flows with SPH , 1994 .

[65]  Geoffrey C. Maitland,et al.  Oil and gas production , 2000 .

[66]  H. Herrmann,et al.  Microscopic mechanism for shear thickening of non-Brownian suspensions. , 2013, Physical review letters.

[67]  Sangtae Kim,et al.  Microhydrodynamics: Principles and Selected Applications , 1991 .

[68]  A. Ladd,et al.  Lattice-Boltzmann Simulations of Particle-Fluid Suspensions , 2001 .

[69]  John F. Brady,et al.  The rheology of concentrated suspensions of spheres in simple shear flow by numerical simulation , 1985, Journal of Fluid Mechanics.

[70]  Eric D. Wetzel,et al.  The ballistic impact characteristics of Kevlar® woven fabrics impregnated with a colloidal shear thickening fluid , 2003 .

[71]  John F. Brady,et al.  Simulation of hydrodynamically interacting particles near a no-slip boundary , 2007 .

[72]  D. I. Dratler,et al.  Dynamic simulation of suspensions of non-Brownian hard spheres , 1996, Journal of Fluid Mechanics.

[73]  Joon Sang Lee,et al.  The effect of sphere roughness on the rheology of concentrated suspensions , 2015 .

[74]  Nikolaus A. Adams,et al.  Multiscale modeling of particle in suspension with smoothed dissipative particle dynamics , 2012 .