An iterated rational filter bank for audio coding

This paper proposes a regular third-of-an-octave filter bank for high fidelity audio coding. The originality here is twofold: first, the filter bank is an iterated orthonormal rational filter bank for which the generating filters have been designed so that its outputs closely approximate a wavelet transform. This is different from the known coding algorithms which all use an integer filter bank, and most often a uniform one; second, the masking procedure itself is modelized with the help of a wavelet transform unlike the classical procedure in which a short time spectrum is computed and which gives rise to unwanted preecho effects. The masking procedure is then made equivalent to a quantization procedure. A simple non-optimized algorithm has been worked out in order to show the benefits of such a structure, especially in terms of preecho (which is perceptually inaudible), and the disadvantages, especially as far as delay is concerned.