A Composite Likelihood Approach in Fitting Spatial Point Process Models

We propose a new likelihood-based approach in fitting spatial point process models. A composite likelihood is first formed by adding some pairwise composite likelihood functions that are defined in terms of the second-order intensity function of the underlying process, and then used for estimating the unknown parameters. The estimation procedure is computationally simple and yields consistent and asymptotically normal estimators under some mild conditions. We demonstrate through a simulation study and applications to two real data examples that the proposed approach may lead to improved estimations compared with the commonly used “minimum contrast estimation” approach.

[1]  Gordon A. Fenton,et al.  Simulation and analysis of random fields , 1990 .

[2]  P. Doukhan Mixing: Properties and Examples , 1994 .

[3]  Øivind Skare,et al.  Pairwise likelihood inference in spatial generalized linear mixed models , 2005, Comput. Stat. Data Anal..

[4]  N. Hjort,et al.  Topics in Spatial Statistics , 1992 .

[5]  D. Cox,et al.  A note on pseudolikelihood constructed from marginal densities , 2004 .

[6]  Mike Rees,et al.  5. Statistics for Spatial Data , 1993 .

[7]  M. Rosenblatt A CENTRAL LIMIT THEOREM AND A STRONG MIXING CONDITION. , 1956, Proceedings of the National Academy of Sciences of the United States of America.

[8]  J. Besag Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .

[9]  B. Hambly Fractals, random shapes, and point fields , 1994 .

[10]  C. A. Glasbey,et al.  Non‐linear autoregressive time series with multivariate Gaussian mixtures as marginal distributions , 2001 .

[11]  Yongtao Guan,et al.  A Nonparametric Test for Spatial Isotropy Using Subsampling , 2004 .

[12]  S. T. Buckland,et al.  An Introduction to the Bootstrap. , 1994 .

[13]  Dimitris N. Politis,et al.  Moment estimation for statistics from marked point processes , 2001 .

[14]  J. Møller,et al.  Statistical Inference and Simulation for Spatial Point Processes , 2003 .

[15]  Patrick J. Heagerty,et al.  Window Subsampling of Estimating Functions with Application to Regression Models , 2000 .

[16]  David J. Nott,et al.  Pairwise likelihood methods for inference in image models , 1999 .

[17]  S. Lele,et al.  A Composite Likelihood Approach to Binary Spatial Data , 1998 .

[18]  Antti Penttinen,et al.  Statistical opportunities for comparing stand structural heterogeneity in managed and primeval forests: An example from boreal spruce forest in southern Finland , 1996 .

[19]  M. Schlather Simulation and Analysis of Random Fields , 2001 .

[20]  Jürgen Symanzik,et al.  Statistical Analysis of Spatial Point Patterns , 2005, Technometrics.

[21]  Noel A Cressie,et al.  Statistics for Spatial Data. , 1992 .

[22]  A. Baddeley,et al.  Practical Maximum Pseudolikelihood for Spatial Point Patterns , 1998, Advances in Applied Probability.

[23]  L. Heinrich,et al.  Asymptotic gaussianity of some estimators for reduced factorial moment measures and product densities of stationary poisson cluster processes , 1988 .

[24]  Dietrich Stoyan,et al.  Estimating Pair Correlation Functions of Planar Cluster Processes , 1996 .

[25]  Joti Jain,et al.  Statistical Inference and Simulation , 2006 .

[26]  Martin Crowder,et al.  On Consistency and Inconsistency of Estimating Equations , 1986, Econometric Theory.

[27]  J. Møller,et al.  Log Gaussian Cox Processes , 1998 .

[28]  B. Ripley Statistical inference for spatial processes , 1990 .

[29]  H. Omre,et al.  Topics in spatial statistics. Discussion and comments , 1994 .