Fast pattern matching using orthogonal Haar transform

Pattern matching is a widely used procedure in signal processing, computer vision, image and video processing. Recently, methods using Walsh Hadamard Transform (WHT) and Gray-Code kernels (GCK) are successfully applied for fast transform domain pattern matching. This paper introduces strip sum on the image. The sum of pixels in a rectangle can be computed by one addition using the strip sum. Then we propose to use the orthogonal Haar transform (OHT) for pattern matching. Applied for pattern matching, the algorithm using strip sum requires O(log u) additions per pixel to project input data of size N × N onto u 2-D OHT basis while existing fast algorithms require O(u) additions per pixel to project the same data onto u 2-D WHT or GCK basis. Experimental results show the efficiency of pattern matching using OHT.

[1]  Eun Yi Kim,et al.  Welfare interface implementation using multiple facial features tracking for the disabled people , 2008, Pattern Recognit. Lett..

[2]  Alessandro Foi,et al.  Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering , 2007, IEEE Transactions on Image Processing.

[3]  Bernd Girod,et al.  What's wrong with mean-squared error? , 1993 .

[4]  Franklin C. Crow,et al.  Summed-area tables for texture mapping , 1984, SIGGRAPH.

[5]  Feng Wu,et al.  Very Fast Template Matching , 2002, ECCV.

[6]  William T. Freeman,et al.  Example-Based Super-Resolution , 2002, IEEE Computer Graphics and Applications.

[7]  Federico Tombari,et al.  Fast Full-Search Equivalent Template Matching by Enhanced Bounded Correlation , 2008, IEEE Transactions on Image Processing.

[8]  Amnon Shashua,et al.  Off-road Path Following using Region Classification and Geometric Projection Constraints , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[9]  Yacov Hel-Or,et al.  The Gray-Code Filter Kernels , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Suya You,et al.  Augmented Exhibitions Using Natural Features , 2007 .

[11]  Jean-Michel Morel,et al.  A non-local algorithm for image denoising , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[12]  Xiaojing Wu Template-based action recognition : classifying hockey players’ movement , 2005 .

[13]  Federico Tombari,et al.  Full-Search-Equivalent Pattern Matching with Incremental Dissimilarity Approximations , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  Sung Yong Shin,et al.  On pixel-based texture synthesis by non-parametric sampling , 2006, Comput. Graph..

[15]  Luc Van Gool,et al.  SURF: Speeded Up Robust Features , 2006, ECCV.

[16]  Daniel S. Hirschberg,et al.  Data compression , 1987, CSUR.

[17]  Wai-kuen Cham,et al.  Fast Motion Estimation for H.264/AVC in Walsh–Hadamard Domain , 2008, IEEE Transactions on Circuits and Systems for Video Technology.

[18]  Yacov Hel-Or,et al.  Real-Time Pattern Matching Using Projection Kernels , 2005, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Roger M. Dufour,et al.  Template matching based object recognition with unknown geometric parameters , 2002, IEEE Trans. Image Process..

[20]  Mei-Chen Yeh,et al.  Fast Human Detection Using a Cascade of Histograms of Oriented Gradients , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[21]  Christoph H. Lampert,et al.  Beyond sliding windows: Object localization by efficient subwindow search , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[22]  Wojciech Szpankowski,et al.  A suboptimal lossy data compression based on approximate pattern matching , 1997, IEEE Trans. Inf. Theory.

[23]  Hagit Hel-Or,et al.  Video Block Motion Estimation Based on Gray-Code Kernels , 2009, IEEE Transactions on Image Processing.

[24]  Rainer Lienhart,et al.  An extended set of Haar-like features for rapid object detection , 2002, Proceedings. International Conference on Image Processing.

[25]  Y. Hel-Or,et al.  Synthesis and Rendering of 3 D Textures , 2003 .

[26]  M. J. McDonnell Box-filtering techniques , 1981 .

[27]  Rainer Lienhart,et al.  Empirical Analysis of Detection Cascades of Boosted Classifiers for Rapid Object Detection , 2003, DAGM-Symposium.

[28]  Howard Rheingold,et al.  Virtual Reality , 1991 .

[29]  Wai-kuen Cham,et al.  Fast Algorithm for Walsh Hadamard Transform on Sliding Windows , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[30]  Paul A. Viola,et al.  Detecting Pedestrians Using Patterns of Motion and Appearance , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[31]  Yacov Hel-Or,et al.  Real-time pattern matching using projection kernels , 2003, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[32]  Paul A. Viola,et al.  Robust Real-Time Face Detection , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[33]  Quan Wang,et al.  Real-Time Image Matching Based on Multiple View Kernel Projection , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[34]  Paul A. Viola,et al.  Rapid object detection using a boosted cascade of simple features , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[35]  Samuel Audet,et al.  Image-Based Rendering Using Image-Based Priors , 2006 .

[36]  Hai Tao,et al.  Representing Images Using Nonorthogonal Haar-Like Bases , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[37]  Hagit Hel-Or,et al.  Irregular pattern matching using projections , 2005, IEEE International Conference on Image Processing 2005.

[38]  Fatih Murat Porikli,et al.  Pedestrian Detection via Classification on Riemannian Manifolds , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[39]  Mohammad Gharavi-Alkhansari,et al.  A fast globally optimal algorithm for template matching using low-resolution pruning , 2001, IEEE Trans. Image Process..