Infinite Series Representations of the Trivariate and Quadrivariate Nakagami-m distributions

In this paper, we derive new infinite series representations for the quadrivariate Nakagami-m distribution and cumulative distribution functions (cdf). we make use of the Miller's approach and the Dougall's identity to derive the joint density function. The classical joint density function of exponentially correlated Nakagami-m variables can be identified as a special case of our joint density function. Our results are based on the most general arbitrary correlation matrix possible. Moreover, the trivariate density function and cdf for an arbitrary correlation matrix is also derived from our main result. Bounds on the error resulting from truncation of the infinite series are also presented. Finally, numerical results are presented to verify the accuracy of our formulation.

[1]  U. Charash Reception Through Nakagami Fading Multipath Channels with Random Delays , 1979, IEEE Trans. Commun..

[2]  Valentine A. Aalo,et al.  Performance of maximal-ratio diversity systems in a correlated Nakagami-fading environment , 1995, IEEE Trans. Commun..

[3]  Athanasios Papoulis,et al.  Probability, Random Variables and Stochastic Processes , 1965 .

[4]  Ranjan K. Mallik,et al.  Analysis of hybrid selection/maximal-ratio combining in correlated Nakagami fading , 2002, IEEE Trans. Commun..

[5]  L. Yue,et al.  Analysis of generalized selection combining techniques , 2000, VTC2000-Spring. 2000 IEEE 51st Vehicular Technology Conference Proceedings (Cat. No.00CH37026).

[6]  Vijay K. Bhargava,et al.  Equal-gain diversity receiver performance in wireless channels , 2000, IEEE Trans. Commun..

[7]  Vijay K. Bhargava,et al.  Simple and accurate methods for outage analysis in cellular mobile radio systems-a unified approach , 2001, IEEE Trans. Commun..

[8]  Leon M. Hall,et al.  Special Functions , 1998 .

[9]  Q. T. Zhang Maximal-ratio combining over Nakagami fading channels with an arbitrary branch covariance matrix , 1999 .

[10]  George K. Karagiannidis,et al.  An efficient approach to multivariate Nakagami-m distribution using Green's matrix approximation , 2003, IEEE Trans. Wirel. Commun..

[11]  Norman C. Beaulieu,et al.  Infinite series representations of the bivariate Rayleigh and Nakagami-m distributions , 1997, IEEE Trans. Commun..

[12]  L. Milstein,et al.  A selection combining scheme for RAKE receivers , 1995, Proceedings of ICUPC '95 - 4th IEEE International Conference on Universal Personal Communications.

[13]  Hirofumi Suzwi,et al.  A Statistical Model for Urban Radio Propagation , 1977 .

[14]  H. Suzuki,et al.  A Statistical Model for Urban Radio Propogation , 1977, IEEE Trans. Commun..

[15]  Ranjan K. Mallik,et al.  On multivariate Rayleigh and exponential distributions , 2003, IEEE Trans. Inf. Theory.

[16]  仲上 稔,et al.  The m-Distribution As the General Formula of Intensity Distribution of Rapid Fading , 1957 .

[17]  Aarnout Brombacher,et al.  Probability... , 2009, Qual. Reliab. Eng. Int..

[18]  W. C. Jakes,et al.  Microwave Mobile Communications , 1974 .

[19]  George K. Karagiannidis,et al.  On the multivariate Nakagami-m distribution with exponential correlation , 2003, IEEE Trans. Commun..

[20]  Chintha Tellambura,et al.  Infinite series representations of the trivariate and quadrivariate Rayleigh distribution and their applications , 2005, IEEE Transactions on Communications.

[21]  I. Miller Probability, Random Variables, and Stochastic Processes , 1966 .

[22]  H. A. David,et al.  Order Statistics (2nd ed). , 1981 .

[23]  K. Miller,et al.  Properties of Generalized Rayleigh Distributions , 1963 .

[24]  L. Milne‐Thomson A Treatise on the Theory of Bessel Functions , 1945, Nature.

[25]  George K. Karagiannidis,et al.  Moments-based approach to the performance analysis of equal gain diversity in Nakagami-m fading , 2004, IEEE Transactions on Communications.

[26]  George K. Karagiannidis,et al.  Performance analysis of triple selection diversity over exponentially correlated Nakagami-m fading channels , 2003, IEEE Trans. Commun..

[27]  K. S. Miller,et al.  Complex Gaussian Processes , 1969 .

[28]  G. A. Mack,et al.  Order Statistics (2nd Ed.) , 1983 .

[29]  George K. Karagiannidis,et al.  On the average output SNR in selection combining with three correlated branches over Nakagami-m fading channels , 2004, IEEE Transactions on Wireless Communications.

[30]  H. O. Posten Multidimensional Gaussian Distributions , 1964 .

[31]  James S. Harris,et al.  Tables of integrals , 1998 .